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Abstract

In this paper, we consider the bivariate Hermite interpolation introduced by Bojanov and Xu [SIAM
J. Numer. Anal. 39(5) (2002) 1780-1793]. The nodes of the interpolationlyith ;, whered =0 or
1, are the intersection points of 2 1 distinct rays from the origin with a multisetbf-1— 6 concentric
circles. Parameters are the values and successive radial derivatives, whenever the corresponding circle
is multiple. The poisedness of this interpolation was proved only for the set of equidistant rays
[Bojanov and Xu, 2002] and its counterparts with other conic sections [Hakopian and Ismail, East J.
Approx. 9 (2003) 251-267]. We show that the poisedness of(khis 1 — 6)(2k + 1) dimensional
Hermite interpolation problem is equivalent to the poisedness of cettajrizlimensional Lagrange
interpolation problems. Then the poisedness of Bojanov—Xu interpolation for a wide family of sets
of rays satisfying some simple conditions is established. Our results hold also with above circles
replaced by ellipses, hyperbolas, and pairs of parallel lines.

Next a conjecture [Hakopian and Ismail, J. Approx. Theory 116 (2002) 76—99] concerning a poised-
ness relation between the Bojanov—Xu interpolation, with set of rays symmetric elzoig, and
certain univariate lacunary interpolations is established. At the end the poisedness for a wide class of
lacunary interpolations is obtained.
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1. Introduction

Let us denote by, the space of univariate polynomials of degréa. The spaces of
bivariate polynomials of total degre€n and homogeneous polynomials of degtee are
denoted bylT, andII;, respectively. The unit circumference is

St:={(x,y) € R?:x?+y?>=1}.
Instead of the radial derivative:

Drf(x,)’) = fx(xvy)“‘

X Y
f'(x’ y)
V24 y? NEE i

one can use here equivalently a modified one [Spe

Dy f(x,y) = xfr(x,y) + yfy(x, y).

We have

D,p=np if pell. 1)

The bivariate interpolation discussed here was introduced by Bojanov afit] Xthe
nodes of this interpolation are the points of intersection/of21 distinct rays from the
origin with a (multi)set of concentric circles, centered at the origin. Thus they are identified
if we have the intersection points of the above rays with the unit ci§élecalled basic
nodes, and radii of the circles. The set of the basic nodes is denoted by

B = B = {(xi, )’i)}izio c st

As we will see later the poisedness of the interpolation depends solely on the basic nodes.
The Bojanov—Xu interpolations slightly differ depending on whether the degree of the
polynomial class is even or odd. The pair of even and odd degree interpolations with
Il2;—1 and Iy is studied simultaneously. For this we introduce a quantignd say
that the polynomial space Hy,_s, whered is 0 or 1, in the above even or odd cases,
respectively. Similarly we express statements concerning the above two interpolations in a
unique formulation by using. In both cases the number of basic nodes is the satnge12
while the number of concentric circles, counting the multiplicitieg, #s1 — 9.
Suppose the multiset of the concentric circles consists diktinct circles with radii
0 <ry < --- <ry and corresponding multiplicitieg, . .., i, . Then we have

S ow=k+1-06. )
i=1

The multiplicity of a node equals to the multiplicity of the circle to which it belongs. The
interpolation parameters are the values of a function and its radial derivatives up to the order
w— 1, whereu is the multiplicity of the node.

Now we are in a position to formulate fér= 0 or 1:
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Problem 1(5). Suppose that a set of basic nodks sequence ofradii@ r; < --- < ry,
and multiplicities uq, . .., y1,, that satisfy (2) are given. Then for any given datg } find
a (unique) polynomiap € I, _5 such that

(D)) prix;, riyj) = cij, (3)
where 1<i <s, 0<j <2k, and O<I<y; — 1.

The next theorem of Bojanov and ] provides the poisedness of this interpolation
problem in the case of equidistant basic nodes.

Theorem 2 (Bojanov and Xij1]). Suppose the basic nodes are equidistansdndé = 0
or 1. Suppose also that an arbitrary sequence of r@di r1 < - - - < ry, and multiplicities
U1, ..., 1, that satisfy(2) are given. Then for any given data;;;} there exists a unique
polynomialp e Il _s satisfying the conditio3).

It should be noted that the poisedness of this interpolation cannot be established as readily
as in the most cases of known bivariate (multivariate) interpolations. The reason is that in
this case there are not enough many points on algebraic curves, particularly on straight
lines, or conic sections, to imply the Bézout factorization.

Let us mention that the poisedness of the above interpolation, in the case of one multiple
circle, i.e.,s = 1, was proved later independently in [3], by a factorization method. There
a connection was found between the poisedness of the above interpolation, with nodes
symmetric about-axis, and certain univariate lacunary interpolations (see Conjecture 14,
Section 3). In [2] the factorization method, which allows to combine the Bojanov—Xu
interpolation with other poised interpolations, was extended to the general equidistant case.
As it is pointed out there, Theorem 2 holds as well in the case of concentric ellipses. In
[4] this result was extended also to other conic sections: concentric or cofocused ellipses,
hyperbolas and a single multiple parabola.

In this paper, we will establish the poisedness of Bojanov—Xu interpolation for a wide
family of sets of basic nodes lying on conic sections (ellipses, hyperbolas, and pairs of
parallel lines) centered at the origin.

2. Preliminaries

We study the Bojanov—Xu interpolation with the basic nodes lying on conic section
centered at the origin, that is,

B := By C C3,
where

CS = {(x,y) : ox? + fxy + py? = 1}. 4
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These conic sections, after a suitable rotation of axes, are reduced to the following ellipses,
hyperbolas, and the pairs of lines given by the equations

2 2
X Y
Es: ;_Fﬁ:l’ 5)
2 2
X M
Hy: — — = =1, 6
20 5= (6)
Lo: y>=0b% or y=+b, 7)

respectively, where, b > 0.
We can represent the set of the interpolation nodes as a union of sets which arésscaled
sets, i.e.,

N =Ui_, B}, 8

We call r; scale constants or “radii”. As earlier, we attach multiplicity to the nodes
from {r; B}, i = 1,...,s, so that the condition (2) is satisfied. Now the formulation of
Bojanov—Xu interpolation in this case proceeds as in Probleh 1(
Let us now start the discussion by considering some properties of the Lagrange interpo-
lation with bivariate homogeneous polynomials, which will be needed in the sequel.
Suppose the node set
By = {(xi, yi)lj_o C R?
does not contain collinear nodes (vectors). Then for any fun€ti@fined ons, there is a
unigue homogeneous polynomie,]’qf e I1,, such that
Py (i, yi) = f(xi,y), i=0,....n 9)

We have the following Lagrange formula
n
e () = O yi) Ly (x, ), (10)
i=0
whereL;, are the homogeneous fundamental polynomials. They are given by the formula

[ljexCxjy — yjx)
[Tjcaxjyi = yjxi)’

Lyi(x,y) = (11)

where the products are over the set
*=1{0,...,i—1,i+1,...,n}
Denote the remainder of this interpolation by

Z,f :=f_P;’f.
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Of course then we have
(12)

R, ;=0 if fell.
Now suppose that the interpolation nodes lie on a conic section centered at the origin:
B, C C3, (13)
whereC3 is given in (4). Then interestingly, in addition to (12), we have
R,‘j’f(é,r,)zo if fell),,n—m=>0isevenand (£, n) € Cs.

This, on account of (12), follows readily from the following

(14)

Proposition 3. The remaindelR;f(é, m, forany f eIl ,and(¢, n) € C3, isalinear

combination ofR;’ ,.}j(cf, n withi + j =m + 2{, [ > 0. Or, more precisely,
m—+2]

wra—i (&) if fell), >0, and ({,n) € C3,

Ry pEm =) iRy
i=0
(15)

where the coefficients depend only ory, /, andC5 (not on the nodesgg, 1), or n).
Indeed, suppos¢ < IT7,. Consider the polynomial
l o
F(x,y) o= (o + fxy + 90 f(x, y) € I,

According to (4) we have

fEm=FEm if Enecs

In view of (13) this forces

Pno’f(xv y) = PnO’F(-x9 )’)
Now, by using the last two relations we get finally
m+21

Ry p(Em =Ry p(Em) = ) GiRY i niai (&),
i=0

where the coefficients are obtained from the following expansion

m+21
F(x,y) — Z Cixlym+2171.
i=0

Consider now the followingn + 1) x (m + 1) matrix:

xgl xg71y0 N y’on
Ve =1 S _ (16)
Xy Xy i
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In the case ofn = n this is the Vandermonde matrix of the above homogeneous interpola-
tion:
Vi = Vy,. (17)
Let us mention that
detV, #£0 <« B, does not contain collinear nodes. (18)

Denote byV(0) andV (1) the generalized Vandermonde matrices of the Bojanov—Xu
interpolation, corresponding to the cases 0 ando = 1, respectively:

V() :=VB.riu.rsp, (0)-
It consists of the following rows:

~\!
(D) Reixjorivp).  1<i<s, 0<j<2k, 0<I<p; — 1,
where the rowR is given by

R(x,y) = [x, Yoo, x %0 m’yzzc—a].
As it follows from the Bojanov—Xu theorem
detV(6) £0 foranyfixed ri,...,r;, (19)

whered = 0 or 1. This statement will be used in the proof of the forthcoming basic
Theoremd.

It is convenient to represelt(d) by its partition of homogeneous blockg, . givenin
(16). In the Lagrange case, where the node\setoes not contain multiple scalé?] and
therefore the sequence of “radii” isOry < -+ < rp 415, We have

2k— 6Vo

Vao Vaya oo 2% 2k
Vo) =| o . , (20)
Voo Ti+1-6Var1 0 Tigio avzoka 5

Now consider the Hermite case, that is, when some scaled basic nodB sets a multi-
plicity u > 1. Then, on account of (1), the corresponding row¥ @f) are partitioned into
Von @S follows (cf. [6]):

o o 2y/0 2k dyso
Voo "V Vo2 V.

2% 2% 5
%610
0 rVZkl 2r? V2k2 2k =0)r oVZkaé . (21)
1,2 ~1 %50
0 rVgq 275%V5, - Zk=O)FHrA0VE o s

The following matrix of ordemn + 1, 0<m <k — 1, of remainder entries, plays an
important role in this paper:

Ry oo(Gint1s Ynv1) - Ry o (Xnt1s Ynt1)
Am: , (22)

Ry ooO2s ) oo Ry, (x2k, y2r)

wheren = 2k —m — 1 andg; = x" 'y,
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3. Results

We start with the result concerning the factorization of generalized Vandermonde deter-
minant of Bojanov—Xu interpolation with basic nodes lying on a conic section centered at
the origin,C3, given in (4).

Theorem 4. Suppose that the basic nodes lie on a conic section centered at the: origin
B C C3, 0 =0or 1. Suppose also that a sequence of scale constarts; < --- < ry,

and multiplicities uq, .. ., u,, that satisfy(2) are given. ThemetV(6) = 0if B contains

0 + 1 distinct pairs of opposite nodes. Otherwisssuming thaB3y,_; does not contain
opposite nodesye have

2k—0 k-1
detV(d) = ps [ ] detvy) [ detas). (23)
i=k i=0

where the constanis = ps(r1, iq, - - .. s, ftg) # 0.

Let us mention that the statement on Wéd) = 0 immediately follows from Bézout's
factorization. Indeed, suppog®containso + 1 distinct pairs of opposite nodes. Then it
is easily seen that in the cagde= 0 there is a line passing through 2- 2 interpolation
nodes (parameters) while in the case= 1 there are two lines each passing through 2
interpolation nodes.

Next, notice that likewise the Bézout factorization implies that if there is an opposite pair
of nodes, sayxy,_1, yox—1) = —(x2, y2¢), then Problem 1(1) is poised wilfy_1 and
By if and only if Problem 1(0) is poised withlp;_2 and By, _».

Indeed, suppose= 1 andapolynomigb € Iy _1 satisfiesthe homogeneous conditions
(3), that is, the conditions (3), wiif};; = 0. Then we get by Bézout's theorem that

p(x,y) = (ax + by)q(x, y),

where the lineix +by = 0 passes through the above opposite nodes. From this we conclude
that the polynomiad € Ily_» satisfies the homogeneous conditions (3) corresponding to
the set of the basic nodé&s;_»> andd = 0.

Thus from now on when studying the poisedness we can assume, without loss of general-
ity, that B does not contain opposite nodes. However, sometimes it will be more convenient
to consider the general case.

We readily get from Theorem 4 the following relation between the generalized Vander-
monde determinants of Problemd),(corresponding té = 0 and 1. Let us mention that
these problems have the same set of basic nodes, but the sequences of “radii” (and therefore
multiplicities) may differ.

Corollary 5. Suppose that the basic nodes lie on a conic section centered at the origin:
B C C5. Suppose also that sequences of scale cons@antsri(6) < - < ryg)(0),
and multiplicities 11 (0), . . ., p;(5(0), that satisfy(2) are given for Probleni(d), where



H.A. Hakopian, M.F. Khalaf / Journal of Approximation Theory 135 (2005) 176-202 183

0 = 0, 1. Then assuming thd#;_1 does not contain opposite nodes have

detV(0) = 20 det(vg,) detv (),
P1

whereps = p; (rl(é), U1(0), ..., 75y (0), us((s)(é)) =+ 0,is given in(23).
In particular, Problem1(1)is poised if Problend (0)is poised. Converselfroblem1(0)
is poised if Problemi(1)is poised and3 does not contain opposite nodes.

Let us mention that Corollary 5, as well as the two statements following Theorem 4,
are proved in [6] in two special cases. Namely, in the case of one multiple circle, i.e.,
s(0) = s(1) = 1, and the Lagrange case of concentric circles with a special sequence of
radii (the same for both Problem 1(0, 1)).

The polynomial interpolation introduced below will be used in the next theorem. Consider
the Lagrange interpolation with the set of basic noigsand bivariate monomials of two
distinct total degreesz, n, with m +n = 2k — 1. Hence the pair of degrees always consists
of even and odd numbers. We call this interpolatien n}-degree interpolation. Thus the
space of thém, n} interpolating polynomials is

m n
I, &I, ={p: pkx,y) = Zocixiy'"_i + Zﬁ,-xiy"_i
i=0 i=0

The following theorem reduces the poisedness of Bojanov—Xu interpolation, which is of
Hermite type, to the poisedness of the abpxen}-degree Lagrange interpolations. Let us
mention also that the Bojanov—Xu interpolation is olEy,_s, i.e., a polynomial space of
dimension(k + 1 — 0)(2k + 1), while all the abovém, n}-degree interpolations are over
polynomial spaces of dimension just 2 1. Note also that the set of nodes of all these
latter interpolations igs.

Theorem 6. Suppose that the basic nodssale constantsnultiplicities ando are as in
Theoremd. Suppose also thdt does not contaid + 1 pairs of opposite nodes. Then the
Bojanov—Xu interpolation witlI,;,_; is poised if and only if thém, n}-degree Lagrange
interpolationsyn =0, ...,k —1, n =2k —m — 1, are poised with the basic node d&t

Regarding thék — 1, k}-degree interpolation above let us mention the following

Proposition 7. The{k — 1, k}-degree interpolation is always poised fBp and H>, given
in (5)—(6).While for L, given in(7), the interpolation is poised if and only if out ¢ + 1
interpolating node% + 1 belong to one line and remaining k to another.

Indeed, for the casds, H», or the directimplication foL», assume that € I1;_; @11}
vanishes at th€2k + 1) nodes of3 C C3. Then by the Bézout theorem we get

PG, y) = (x? + fxy +9y% — Dr(x, y).

Now notice that, unless = 0 the difference of maximum and minimum total degrees of
monomials of the polynomiad is at least 2, which is a contradiction.
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To verify the inverse implication fof., suppose that one line, say— b = 0, contains
>k + 2 nodes and the anothetk — 1 nodesi(x;, y;), i =1, ..., s, wheres <k —1. Then
the following nonzero polynomial

A
Y =b ey =y e & T}
i=1
vanishes at all interpolation nodes.

The following property of thegm, n}-degree interpolation is interesting in connection
with the analog property of the Bojanov—Xu interpolation mentioned after Thedtem
Below, by the{—1, 2k — 2}-degree interpolation we mean the Lagrange interpolation with
I

Proposition 8. Let5 contains a collinear pair of nodesay(xz;—1, y2x—1) and (xzx, y2x)-
Suppose that there is no other node collinear with this pair. Therrthe }-degree inter-
polation,m +n = 2k — 1, is poised withBy if and only if the{m — 1, n — 1}-degree
interpolation is poised witty; _».

Indeed, let
(g — f)xi,y)=0 for i=0,...,2%,
whereg € IT; and f € IT;. Supposeéxa_1, ya—1) = A(x2k, y2r). Then we have

g(xok, yor) = f(xak, y2r), and A" g(xak, yx) = A" f (xok, yor)-

This implies(A" — 2")g(x2k, y2r) = 0. Sinced # 0,1, andm +n = 2k — 1, we get
g(x2r, y2r) = 0O thereforef (x2x, y2x) = 0 too. Consequently

fG,y) = (ax +by)fi(x,y) and g(x,y) = (ax + by)gi(x, y),

whereg; € II;,_; and f1 € II;_; and the line with the equatiamx + by = O passes
through(x2x, y2x ). Finally, in view of the second hypothesis Bnwve get

(g1 — fu(xi,y)=0 for i=0,...,2k—2

Itis easily seen from Theore(or 3):

Corollary 9. The poisedness of Bojanov—Xu interpolation depends solely on the basic
nodesB.

Thus the poisedness does not depend on “radii”, i.e., scale congtamtsnultiplicities
; of the node sel given in (8).

In the next theorem we establish the poisedness of a wide class of Bojanov—Xu interpo-
lations satisfying certain simple conditions. Let us start with notation and a definition.

We denote bm, whereN, M e C3 are not collinear, the arc &5 with endpointsN
andM. Note that in the case of ellipse (circle), there are two such arcs. Then we choose the
oga\vvith smaller angle from the origin. BW/,T/I), we denote the open arc, i.&N, M ¢
(N, M).
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Definition 10. We say that the set of basic nodes
B={(xi, )%, C C5

satisfies th@pposite nod@roperty, if there is a subs& = {N,-}f:O of k + 1 nodes from
B such that

(&) The nodegN; }fzo are lying successively on a continuous &rof the conic section

Cs,
(b) The arcI is on one side of some line passing through the origin,
(c) for each arg; := N;_1, N;, there is a nod&V;; € B\ B} such that

~Nigi € (3), i=1,... k.

Let us mention that one can readily construct nodeset C5 possessing the above
property. In the case of ellipge,, given in (5), choose a line passing through the origin and
k + 1 nodes of3; on the ellipse lying on one side of the line. Then the remaikingdes
are chosen satisfying the above condition (c). In the case of the hypdfpolathe pair of
lines L, given in (6)—(7), we choose-+ 1 nodes of3; on one branch of the hyperbola or
on one of lines, respectively. Then the remainkmgpdes are chosen on the other branch or
line such that the condition (c) is satisfied.

Now we are in a position to formulate

Theorem 11. Suppose that the basic nodssale constantanultiplicities,and ¢ are as
in Theoremd4. Suppose also that C C5 does not contai + 1 pairs of opposite nodes
and satisfies the opposite node property. Then the Bojanov—Xu interpolatioflyyith

is poised.

The nextresult concernsthe ellipgggivenin (5). By the angle between two noncollinear
points (vectors) we mean the one that is less than

Corollary 12. Suppose that the set of basic nodes lies on the ellipse:E2 and does not
containd + 1 pairs of opposite nodesyhile the scale constantsultiplicities,and ¢ are

as in Theorend. Suppose also that all the angledetween any two neighbor basic nodes
satisfy the inequality

() «<m/k,or all they satisfy the inequality,
(i) a>m/(k+1).

Then the Bojanov—Xu interpolation witlhy, _ 5 is poised.

Next we turn to the conjecture presentedidh Here the 2 + 1 basic nodes lying o>
or Hy, given by (5)—(6), are symmetric abotraxis. Therefore one of them lies araxis
and coincides witlit+a, 0). For certainty let us take:, 0). Denote the set of the basic nodes
in this case by

By = {xi, £y} o,
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where(xo, yo) = (a, 0). The projections of these nodes.oaxis give rise to the following
knot set:

X = (x5},
wherexg = a.
Denote

Ly, =0<i<n:i#n—-1n-3,...,m+2}.
Consider the following lacunary interpolation problemsdet 0 or 1.

Problem 13¢). Let OSKm<k — 1, n = 2k —m — 1, and the set of knot&” be given.

Then for any given datg; } find a (unique) polynomiaf of formg,(x) = ¢, oux'%,
such that "

qe(x;) =¢; for i=¢, ... k. (24)

It was shown in[3], in the case of one multiple circle, i.e.,= 1, that if the above
univariate lacunary interpolations are poised wittihen the Bojanov—Xu interpolation is
poised withB.. It was conjectured in [3, Remark 13(iii)] that the reverse statement also
is true:

Conjecture 14 (Hakopian and Ismail [3]). Suppose that the basic nodes are symmetric
aboutx-axis and lie on the unit circleB.  S. Then the Bojanov—Xu interpolation with
Il,,_5, 06 = 0, 1,and one multiple circle is poised if and only if there are no opposite knots
in X and all the univariate lacunary interpolations in ProblelBi(), ¢ = 0, 1, are poised.

We show that the above Conjecture holds in more general case. Namely for arbitrary
multiset\/ with the set of basic nodd3. on E or Hp, given in (5)—(6).

Theorem 15. Suppose that the basic nodes are symmetric abeasis and lie on the
ellipse or hyperbolaBy. C E; or H,. Suppose also that the scale constamigltiplicities,
ando are as in Theorem. Then the Bojanov—Xu interpolation wikl, _s is poised if and
only if there are no opposite knots i and all the univariate lacunary interpolations in
Problem13(), ¢ = 0, 1, are poised.

Note that if X’ contains two opposite knots th&n. contains two pairs of opposite nodes.
Consequently, according to Theoreinthe Bojanov—Xu interpolation withl,;,_; is not
poised, where& = 0 or 1. Thus, according to Theorem 5, to prove the above theorem it
suffices to prove

Lemma 16. LetO<m <k — 1. Suppose that does not contain opposite knots. Then the
{m, n}-degree interpolationyherem < n, n = 2k —m —1,is poised with5+ C Ez or Ho

if and only if the two lacunary interpolations in Probleli (), corresponding t@ = 0, 1,

are poised.
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Now let us consider the opposite node property for the cagg.ofNote that then the
condition—Niy; € (y,) in Definition 10(c) is reducing to

Xi—1 < —Xg4+i < Xi,

whenevery; _1 # x;, whereN; = (x;, y;). On account of this we get that the opposite
node property is satisfied with,. C E, provided

a=2XxQ>—Xp >X]>—Xg—1>X2>+-+>XxXg > —Xg41 > 0, or

a=XxQ>—Xp >X] > —Xg—1>X2> "+ >Xg_1>—Xg41 > X5 >0, (25)

fork = 2s+1 or k = 2s, respectively. In the case of hyperbok: c H, the corresponding
conditions are

a=2X0 < —Xfp < X1 < X1 < X2 <+ < Xg < —Xgt1, or

a=X0 < —Xj < X1 < —Xp—1 < X2 < -+ < Xg—1 < —Xg41 < Xg, (26)

fork = 25 + 1 or k = 25, respectively.
Indeed, it can be readily verified that the 8¢tof Definition 10 can be chosen as follows:

Bf = {(xi, £y 11 or {(xi, £y))_o,

for k = 25 + 1 or k = 2s, respectively, where; := b, |+ (1— ();—2)2> i=0,..., k.
Therefore, taking into account also Theorelisand 15, we get the following result on the
poisedness of univariate lacunary interpolations.

Corollary 17. Suppose the chain of inequalitié®5) (or (26)) holds for the knot set’.
Then all the lacunary interpolations in Probleb3(), ¢ = 0, 1, are poised.

Now let us turn again to the lacunary interpolation Problenz)13{otice that the inter-
polations there are clearly poised in the case of nonnegative khotf, i = 0, ..., k.
In fact this readily follows from the Descartes signs rule (see [7, Part 5]). Now, going back
from these interpolation problems to the Bojanov—Xu interpolation, on account of Theorem
15, we get

Corollary 18. Suppose that the basic nodes are in the first or fourth quasgnmetric
aboutx-axis,and lying on the ellipse or hyperbol&.. C E2 or H». Suppose also that the
scale constantsnultiplicities andd are as in Theorem. Then the Bojanov—Xu interpolation
with ITy,_; is poised.

4. Proofs

Proof of Theorem 4. Proof of Theorend consists of two parts corresponding to the cases
0 =1 or 0. Part 1 is the main one to which Part 2 will be reduced readily.

Part 1: The cas& = 1. The proof of this part consists of three steps: Proposition 19,
factorizationsV°, and factorizationsA. In Step 1 we bring the Vandermonde matrix of
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Bojanov—Xu interpolation, by using the elementary row operations, into a special form.
Both Steps 2 and 3 contakfactorizations (cf. formula (23)). In Step 2 the factors are the
Vandermonde determinants of homogeneous interpolationdZtet i =k, ...,2k—1
(see (16)—(17)). In Step 3 the factors are(dgl, i =0,...,k — 1, whose entries are
remainders of the homogeneous interpolation (see (22)).

Stepl: Consider the Vandermonde matrix of Bojanov—Xu interpolation corresponding
tod = 1:V(1). Inthe next proposition it will be transformed to the following form

o o o
rlOvzok,o e ) r1.2%-2 Vorok—2 Vo ak-1
v/ = | 2920 e r2.2k-3V5p 23 Var,2—2 ’
o o o
rkOVZk,O A rkak*1V2k,k—l V2k,k 0 0 0 27
wherer;; depends omy, piq, ..., Is, [

Proposition 19. One can bring the matri¥/ (1), by using the elementary row operations,
with constants depending @m, 14, . . ., s, 4, to the above matri¥’’. Moreover the con-
stants used in the operation of multiplication of a row are not zero. Therefore

detV (1) = p’ detV’, (28)
wherep’ depends only ony, g .. ., g, -

We will use the partitioned form of (1) into homogeneous submatrices (see (20)—(21)).
Let us implement the above-mentioned operations first in the Lagrange case, that is, when
there are no multiple scaled basic sets. Next it will be modified to fit the general Hermite
case of multiple scaled basic sets, too. Thus we start with the Vandermonde determinant
V(1) inthe Lagrange form (20). We are going to use the Gauss (block) elimination to reduce
it to the form (27). The smoothest way for this is through the use of divided differences.
For this purpose we first factor out)%—1 from thelth block row of the matrix/ (1), for
I=1,...,k and set; := % This reduce® (1) to

2%—11,0 %—21,0 o
[ﬁ Voo 1 Vaa V2k.2k—1:|
2%—11,0 %—21,0 o '
% Vao & Vair o Vama

Next we replace successively the block rows of the above matrix, starting with the last one,
by block rows with coefficients expressed by divided differences. Namelyhthéock row
above is replaced by the row

[10V5o  t1Vaa -+ 12k-1Va o 1] (29)
where

2k—v—1
ty =[t1, ..., 4]t
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Note that this change actually is a result of elementary row operations. Indeed, consider the
Lagrange formula with distinct knots

S (@)
[t1,....01f = (30)
Z H/e*(tl _
where the products are over the set= {1,...,i — 1,i + 1,...,[}. According to this

formula the above replacement corresponds to the operation of multiplication tihthe
block row by o= (tl # 0 and adding to it a linear combination of the filst- 1
block rows.

Now we use the well-known property of divided differences:

[t ol = 1 ifv=1-1,
LM =00 if vl —2.
This implies that; 2x—; = 1 and the coefficients next to it are 0, i.e., the above row (29) is

equal to

[10Vsr 0 11Varq -+ t12k—1-1Vap -1 Vorok O --.0].

Thus the matrix/ (1) is reduced to/’.
Next let us turn to the general Hermite case of arbitrary multiple scaled basic sets.
Suppose some scaled basic node sBt,has a multiplicityx and consider the corre-
sponding rows oWV (1) partitioned intoVZOk)n, given in (21). Below we will show that one
can transform (21), by elementary row operations, into the following form

2%k—1y/0 ° o
t 2V 3 WVook—2 Vorok—1
k o o
2k — 1)#=2v5 2Vaok-3 Vakor-2 o .
(2k—1)! 2k—
Gt Voo o MtV gy (W= DIV 5, 0 0 0

(31)

where the block rows are successive derivatives of the first row with respect to

Meanwhile let us verify that this transformation solves the problem. Consider the gen-
eralized Vandermonde matrix of the Bojanov—Xu interpolationdoe 1. Suppose the
multiplicity associated with “radii’¥; ory; = 1/r;, isy; i.e.,

{t1, ...,y i={t1, ..., 11, ... b, oo L),
—— ~——

H Hy

wherek = u; + --- + p,. Suppose also that the above-mentioned transform is already
performed for the block rows of the matrix corresponding to thofe whichy; > 1. This
enables us to order the block rows of the matrix in accordance with the above sequence
{r1, ..., 7}. In particular, th&/ + 1)th block row coincides with the derivative it block

row with respect te, whenever; = 7;11. Now, as in the above Lagrange case, we replace
successively the block rows of the matrix, starting with the last one, by block rows with
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coefficients expressed by divided differences, whose knots now may be multiple. Namely
thelth row is replaced by (29) where

2k—v—1
ty =[t1, ..., 7tV

Then we make use of the generalized Lagrange formula for divided differences:

s =1
[11,...,tl,...,ts,...,ts]f=ZZcijf](li),
i—1 j=0

Ha K

wherec; ;. 1 # 0. This formula, in the same way as (30) above, leads to the desired result.
Now, regarding the transformation of the matrix (21) to (31), notice that what we need is
to bring, by elementary row operations, the following matrix

1 r r2 ce r’
My = 0 r 2r2 . nr
0 ,, 2“._.1.r2 nu.—.il:rn
to the matrix
" 2 1
My nt" 1 22 1 0 7
=y TR L9 w-1! 0 0 O
wherer = 1/r. Notice that it is enough to transfori; to
1 r p=2  pn=ln
Ms = n (n—Dr 2rn=2 =1 7
W!H)! %r A (TR N e el IR 0

since gettingM> from M3 is immediate. Indeed, for this we are to factor etifrom the
first row, »"~1 from the second row and so on. What remains then is toset /.

Next note that clearly it suffices to do the reverse of what we need. Namely, to transform
by elementary row operations the mathisg to M1. This can be done in view of the fact that
thelth row of the matrixA is a linear combination of firdtrows of M3 with coefficients
dependingonlyoi, I =1,...,pu.

Itis enough to verify the latter only for the lagtth row of M1. For this observe that the
coefficients of the entries of the last rowMf; and all theu rows of M3 coincide respectively
with the values of the monomial~! and followingu polynomials

1, n—x), m—x)n—x—-1,...,n—x)n—x—-1---(n—x — u+2), (32)

at the points 01, . . ., n. Finally, the only point remains is to represent the monomfaft
as a linear combination of polynomials in (32), which can be readily checked.

Step2: Factorization® °. The case whelf contains two or more distinct pairs of opposite
nodes was discussed just after the formulation of the theorem. By the way this could be
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done readily also by using the matNX (see also the corresponding matrix in Part 2). It
remains to consider the case when the basic node set contains no more than one such pair
of nodes. Thus suppose without loss of generality that

there are no collinear nodes By, 1. (33)

Now, we turn to the matri¥’ givenin (27). Notice that in the last block column, where there
are Z columns, the nonzero entries form a submat@g%_l of dimension(2k + 1) x 2k.

We are going toimplement a basic step — eliminate the last rowof, ; corresponding
to the node(xy, y2r). After this the above-mentioned submatrix with nonzero entries in
the last block column o/’ becomesi/;k_lz,{_l which has dimension2x 2k. This will
enable us to factorize d¥t by using the Laplace expansion along the last block column of
the determinant. .

Throughout the proofR{ stands for thgth row inside theith block row of the matrix
under the discussion, where the latter will be clear from the context.

In the above-mentioned elimination we will use homogeneous Lagrange interpolation
with the polynomial spacél3,_; and the nodesxog, yo), ..., (x2k—1, y2xr—1). This inter-
polation is poised in view of (18) and (33). Let us now perform the elimination by the
following row operation inside the first block row of the matix

2k
RIH - RIH - Z L3_1,i-1(x2k, y20RY,
i=1
where the coefficients are the fundamental polynomials given in (11).
By virtue of the Lagrange formula (10) we get that the old rﬂﬁ?*l:

2k—2 2k—2 2k—1 2k—1
[rlo r11X ri11y...r12-—2Xx ST 2k-2y X .Y ] |(x2k,)’2k)

will be replaced by the following new one:

2k+1
Rl = [rlORSO rl]_R;_lO }’11R81 . r1,2k—2ng—2,0
n
cri 2Ry 5 0. .. O] | (ot y20)

wheren = 2k — 1 and
R:lj = R;'¢ij = (l’)” — P;7¢ij and(ﬁu = xiyj. (34)

Notice that the entries of the above row Correspondinglf}owith i+ j=2k—1were
eliminated since the monomiajs; there belong to the space of interpolating polynomials:
I, 4.
2|<CIO\1N one could already factorize the Vandermonde determinant. But in order not to be
occupied with the above roWikJrl in the nextV °-factorizations we need to eliminate also
its entries corresponding t@i"j withi + j =2k —2,2k—3,...,2k — k = k. To do this
for the casé + j = 2k — 2, consider the rows in the second block row of the matfixd_et
us start by taking the same linear combination here, as in the first block row, and designate
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it by R%, iie.,

2%
Ry =RET = "Ly 1 (2 )Ry
i=1

Notice that this results in
R; = [rzoRSo. .. r2,2k*3ng—3,0‘ . 'r2,2’<*3R8,2k73
n n
X Ry 50 RG220 0] [z ymp)-
Then the row operation
2k+1 2k+1
RIM — REM — 1y 5 oRS

provides the desired elimination. By continuing eliminations this way tilktineblock row
we will finally reduceRZ™ to the following row, where: = 2k — 1 anda} are some
numbers:
2%k+1 1 1 1 1 1
Ry = [aoRSO aiRigaiRor - - a1 R 10+ ai_1Ro 1 0. 0] | ez v0)-
Note that the coef‘ficients:;1L are the same for the entri@, with i + j = s. Let us mention
that the entries of these rows, preceding the last zeros, will remain unchanged till the end
of this step of factorizations.
Now we get by the Laplace theorem:

detV’ = p" detV” detVs_; 5. (35)

wherep” = p"(r1, uq, ..., 15, it;) and the matrixy” is obtained fromV’ by replacing

the first block row by the above ron"Jrl and by canceling the last block columnk(2
columns). In order not to change the numbers of block rows it is convenient to consider the
latter row as the first block row &f” (which has just one row).

Let us then turn to the matri¥”. Notice that in the last block column, where there are
2k — 1 columns, the nonzero elements form the submatgjx,, , of dimension(2k +
1) x (2k — 1).

Next we implement the analog of above-mentioned basic step — eliminate the last two
rows of V2°k72k_2 which correspond to the nodésy, 1, yox—1) and (xok, vz ). After this
step the above-mentioned submatrix with nonzero entries in the last block coluxih of
becomes/;, ,,,_, which has dimensio2k — 1) x (2k — 1). This will enable us to use
the Laplace theorem for another factorization.

For the elimination, as earlier, we will use homogeneous Lagrange interpolation. Here
the polynomial space iH5,_, and the nodes aro, yo), ..., (xor—2, y2k—2). This inter-
polation is poised in view of (18) and (33). Now let us do the following row operations
inside the second block row

2k—2
2k+1 2k+1 ]
i=1
2k—2

% 2% ;
Ry = Ry — Z Ly 2 1(x2k-1, Y1) R
i=1
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By using the Lagrange formula (10) we get that the otth2and(2k + 1)th rows of the
second block row will be replaced by the following new ones:

2k+1
RZ = [rzoRSo r21Rﬁo r21R81. .. r2,2k,3ng73‘0
. r2,2k—3R8,2k—3 0... 0] |(X2k»)’2k)’

and

2k
Ry = [rZORSO ”2qu0 r21R81 o r2,2k,3ng73’0
n
-+ 12,2k-3Rg 23 0. .. O] a1, yt-0)-

wheren = 2k — 2 andR;’/ is given in (34). As earlier, the entries of the above rows
corresponding t(Rl’.’j with i + j = 2k — 2 were eliminated, since the monomigig there
belong to the space of interpolating polynomidls;,_».

Before we use the Laplace theorem for the determina¥t’ofve eliminate, in the same
way as in the previous case, also the entries of the above two rows corresponﬂ’i{?]]g to
withi +j =2k — 3,2k — 4,...,2k — k = k. Thus finally they will be reduced to the
following two rows, where: = 2k — 2 andal.2 are some numbers:

2k+1 . 2pn  2pn _2pn 2 n 2 n

Ry = [aoRoo aiRyyaiRy; - a1 Ry_10---aj_1Rp_1 0. .. 0] | oot yar)
2k .__ 2 pn 2pn 2pn 2 n 2 n

Ry = [aoRoo aiRygaiRyy - a1 Ry _q9- - aj_1Rp—1 0. --0] lCeat—1,y26-1)-

Note that the coefficients® are the same for these two rows. Also they are the same for the
entriesRl’?j with i + j = 5. Let us mention that the entries of these rows, preceding the last
zeros, will remain unchanged till the end of this step of factorizations.

We get by using the Laplace theorem:

detV” = p" detV" detVs,_5 »_», (36)

wherep” = p"'(r1, 114, - . ., 5, 1) @nd the matri®y”” is obtained fromV” by replacing its
second block row by the above ro@s *, R3¢ and by canceling the last block column
(2k — 1 columns).

Now by combining (28), (35), and (36) we get

detV(l) = p/p//p/// detVW detVZOk_z’Zk_Z detV;k_l’%_l.
Continuing this way, after the lakth factorization, we get
2k-1

detV(1) = p [ ] dettv?) det(A), (37)
i=k
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wherep = p(r1, iy, ..., rs, itg) andA is the following matrix

~ 1p2%—1  1p2k-1 _1p2k—1 1 p2k—1 1 p2k—1 -
agRay = aiRiyg © agRgpr — o @ RiTyy o @Ry
2p2%—2  2p2%—2  2p2%k—2 2 p2%—2 2 %2
agRog aiRyg ajRpy e @R @ Ro
2p2%k—2  2p2%—2  2p2%k—2 2 p2%k-2 2 p2%k—2
A= agRoo = aiRip © aijRy; @R o aRox

k pk k pk k pk kK pk Kk pk
agRyo  aiRyg  aiRyy - @ Ry 40 - @ Rgi g

k pk k pk k pk kK pk kK pk
L agRy ai; Ry aiRpy o @Ry 1o 0 @ Rp 1

Here the first row is evaluated @iy, y2¢), second and third rows &to, y2;) and(xz;_1,
vok—1), respectively, and the laktrows at(xok, yox), .. ., (xk+1, Yk+1), respectively. Note
also that the coefficients of the entries WRQ. depend only om and(i + j).

Step3: FactorizationsA. Note that so far all we used for the set of basic nodes was that
Bor—1 does not contain collinear nodes. At this step we will use the condition that

BcCC3,

whereCs3 is given in (4).

Here we will factorize ddg#\) by using the Laplace theorem with respect to the kast
rows. Beforehand we will eliminate some entries there. Denote the submakifoofned
by its lastk rows by B. Note that the submatrix in the laktcolumns ofB is a’k‘_lAk,l,
where the matrixd_; is given in (22).

Ourfirstaimis to eliminate by elementary row operationa all the columns oB except
the lastk ones. We begin by proving thaﬁf1 # 0. Conversely suppose thdjﬁl =0.
Then according to the statement (14), the last 2 columns oB vanish, or in other words,
all the entries oB corresponding taR%. with i + j >k — 2 vanish. Next, the statements
(14) and (15), withn + 21 = k or k — 3, imply that all the columns d8 are either zero or
linear combinations of it& — 2 columns with entries correspondingR{;_&o, . Ré’k_3,
respectively. This means that the maximal number of linearly independent columns and
therefore rows oB is <k — 2. Therefore the rows @& and hence the rows éf are linearly
dependent, which contradicts to (19).

Thus, we havet,’g_1 # 0. By using again the statements (14) and (15) now with2/ =
k — 1 we get that all the columns & are (either zero or) linear combinations of its last
k columns. This enables us to carry out the elimination of those columBsmé#ntioned
above as follows. Consider such a column with entries correspondiﬁgvtm, ), with
u+v<k — 2. If k — u—vis even then in view of (14) the column vanishes. Otherwise,
according to the above conclusion:

k=1

Riy (e, y) =Y ciR]_y_; (x1, 1),
i=0

wherel =k+1,...,2k+1, j=k,...,2k—1,andc; depends only op, v, k andC;
not onj or/.
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Now let us perform the following column operation of the matkix

k k—1
aquv
Cuv - C,uv - Z ¢iCr—1-i,
Y%-1 -0

whereC,,, is the column ofA with entries corresponding mn and the coefficients are
from the above relation. It is easily seen that the columA dfeing considered becomes
then

T
_[s1p2%-1 -2p2%—2 ~2p2k—2 ~k—1 pk+1 ~k—1 pk+1
Cuv = [asRu\, sagRy T ag Ry, L ag TRy, L ag TRy, ,0...,0] ,
wheres = u+ v and
k
i i i a
~J] J J
a5 = ay — ap_y——.
-1

From here we conclude, what is important, that the new coefficients are the same for all
columnsC,, with s = 4 v and also they are the same for entries correspondiﬂ@;o

with s = u + v. Let us mention also that, depend only omy, y; ..., rgp,, not on the
conic sectiorCs. In other words the property of the coefficients of the mafrimentioned
just before Step 3 is preserved.

Now the Laplace theorem gives

detA = (¢ H¥ detA,_1 detA,

where
1 p2%—1  =1p2%k—1  =1p2%k-1 1 o2—1 1 k-1
agRog aiRig ayRop @ R Zo0 o a_oRo
2 02%—2  2pk-2  a2p2k—2 2 L2k-2 2 L2k-2
agRog aRg agRop @ R T Ry
2 0k—2 2 p2k—2 =2 p2k—2 2 a2k-2 2 ok-2
i~ | %Roo a1R1o aRo T G oRTo0 o G oRo
L k4l kL phdl k4L pktl 1 k41 k1 k1
ag Rog~ dp "Ryg ap Ryt o @GR TS50 o @ oRgTo
L k4l kL phdl kAL pktl 1 kA1 k1 k41
ag Rog~ dp "Ryg- ap Ryt o @GR T50 0 G oRgTo

Continuing this way we get the factorization

k—1
detA = p [ [ det4)),
i=0
wherep = p(r1, iy, ..., rs, itg). This combined with (37) yields the desired formula (23),
whereps; = pp # 0 according to the statement (19). This completes the proof for the case
o=1.
Part2: The casé = 0. This case can be reduced to the previous &asd.. We transform
V(0), in the same way as in Part 1, to the form (27). Now we get

detV(0) = p’ detV’,
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where the matri®/’ in this case is

o o (o]
rlleok,o e . rl,2koV2k,2k—1 Vor 21
v/ = | "21Vap0 r22-1Vo o2 Va1
Me+11Va 0 o Thttk-1Va g1 Varr O 0 0

Note thatp’ andr;; depend only omy, uy, ..., rs, f.

Then notice that the nonzero elements in the last block column above form a submatrix
of dimension(2k + 1) x (2k + 1). Thus without additional undertaking we get from the
Laplace theorem

detV’ = detV" detVy 5.

whereV” is exactly of form (27). Therefore it remains to apply the result of Part 1. This
completes the proof. [J

Proof of Theorem 6. Suppose thaf = By, does not contaifi+ 1 pairs of opposite nodes.
Then there are no opposite nodes in the @ase0 and without loss of generality we can
assume that there are no opposite nodes irigle; in the casé = 1 as well. Thus in both
cases the determinani’ in the right side of the formula (23) do not vanish. This means
that the Bojanov—Xu interpolation far= 0, 1 is poised if and only if the determinants
there do not vanish.

Now what remains is to show that d&j, - 0 if and only if the{m, n}-degree interpola-
tion(n = 2k —m — 1) is poised, foreaclw =0, ..., k —1. Thus, suppose thatdéf, = 0
for some fixedn (see (22)). Then the columns of the matdiy, are linearly dependent:

m
Z O(,'Cl‘ = 0,
i=0

where(; is theith column and not all the coefficients are zero. This implies that
R, (xj,y)) =0, j=n+1 ... 2,

where

g= ogi=) ux" 'y £0,
i=0 i=0
On the other hand, by the notion of the remainder and (9),
R, ,(xj,yj))=0, j=0,...,n
Thus
g(xj, yj) = Py (xj,y;) =0 forj=0,..., 2. (38)

Now, notice thatthe polynomialin the left side of this equality is notidentically zero, belongs
toIT;, @ II; and vanishes at all the nodes. This means thafrthe }-degree interpolation
is not poised.
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Next assume that thign, n}-degree interpolation is not poised. Then
glxj,yj)— f(xj,y))=0forj=0,...,2%k,
whereg € I1;,,, f € II, andg # 0. This implies that
f=P,

and the relation (38) takes place. The latter, as we knew, is equivalentAg,detO.

Proof of Theorem 11. Assume that3 satisfies the opposite node property. Suppose with-
out loss of generality thaf,,_1 does not contain opposite nodes. Bt= {N; }ﬂ.‘zo chB

be the set from Definition 10. We will prove that edeh n}-degree interpolation is poised,
wherem =0, ...,k — 1, n =2k —m — 1. Fix any suchn. Assume that

(g— f)xi,y)=0, for i=0,...,2k,

whereg € II;, and f € II;. Then it suffices to show

g, f=0.
Thus we have that
g(xi,yi) = f(xi,yi) for i=0,...,2k. (39)

Let us first consider the case when
gxi,yi) = f(xi,yi)#0, i=0,...,2k.

We are going to show that on each open &yp¢) = Ns/,l,\NS, s =1,..., k, between
two neighbor basic nodes &, the total number of zeros gfandf is at least 2. Let us fix
such arns. At the endpoints of the ar@,) : N;—1 and Ny, the polynomialg, f assume
the same values, sayandf;, respectively. Itxf < 0 then each of the two polynomials will
have zero inside the open arc. Thus suppgbe 0. Let N, = (x4, y5), 0 = k + s, be the
node fromB such that-N, € (y,) (see Definitionl0 (c)).

Now by denotingg (x4, v5) = f (x4, Ys) := 7 We get that

g(=xg, —yo) = (_1)m7 and  f(—xg, —yo) = (_1)n7)-

Therefore the values af andf at the three successive points_1, —N,, N; of the arc
y, are

o, (_1)m’yv ﬁv and o, (_1)”77 ﬁ’

respectively. The mean terms here have different signs, since the numbershave
different parity, while the first and third terms; 5, have the same sign. Thus one of the
polynomials changes its sign on the considered arc at least twice and therefore has at least
two zeros.

Summarizing, we have that the total number of zeros of homogeneous polyngiauials
fis at leastn + n + 1 = 2k. Therefore eitheg has more tham zeros orf has more than



198 H.A. Hakopian, M.F. Khalaf / Journal of Approximation Theory 135 (2005) 176—-202

n zeros. Notice that, by virtue of the condition (b) of Definitib@, there are no opposite
zeros. Thereforg = 0 or f = 0, respectively. Now the condition (39) readily implies that
the other one is also identical to zero.

Next let us return to the condition (39) and consider the case when

f(xj,yj) =g, y;))=0
for some fixedj =0, ..., 2k. Then
g(x,y) = (ax +by)gi(x,y) and f(x,y) = (ax + by) fi(x, y),

where the line with the equatianx + by = 0 passes througtx;, y;).
Thus the given problem is reduced to

(81— fU(xi,y) =0 for i=0,...,2, i#}], (40)
whereg; € IT) _; and f1 € IT) _; and we are to show that
81, f1=0.

In other wordsk was replaced by — 1 (one equality in (40) is extra and can be ignored).
The only point remains is to verify that the opposite node property holds with the latter

problem. First consider the case when no poirif & opposite tdx;, y;). Then the subset

in Definition 10 can be chosen &_, := B; \ {(xs, y5)}, Where

{] if (xj,y;) € Bj,
s=1" , —
Jj—k it —(xj.yj) € Nj—it1, Njr.

Also the equality with = j + k or j — k can be ignored in (40), respectively.

Now consider the case when there is a poinBaipposite to(x;, y;). Note that this is
possible only in the casé = 1. Then it is easily seen that;, y;) and its opposite point
necessarily coincide with the nod&®, Ny € B;, where

No = —Ng.

Finally what remains is to note that the subset of Definififrin this case can be taken as
Bi_, = B\ B{. Also the equality with = k ori = 0 can be ignored in (40), if = 0 or
Jj = k, respectively. This completes the proof.]

Proof of Corollary 12. Throughoutthe proofthe arc with angte N/—\N means the one
for whichN goes to— N counterclockwise. Suppose that= {Ni}l.zio, whereNy, ..., Ny
are lying successively counterclockwise on the elligsegiven in (5).
First consider the case wh8rtontains a pair of opposite nodésand— N . Note that this
is possible only in the case= 1. Then one of the ards, —N, —N, N contains< (k + 1)
and anotheg= (k + 2) nodes (the noded and—N are counted in both cases). Therefore
if one of the conditions of Corollary 12: (i) or (ii) is satisfied then these numbers become
(k+ 1) and(k + 2). Moreover, thek + 1) nodes or thék + 2) nodes become equidistant,
with arcs between neighbors equalk or n/(k + 1), respectively. Now let us choose the
(k 4 1) nodes to form the sd; = {Ni}ffzo from Definition 10. In view of Theorem 11,
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it suffices to show thaB satisfies the opposite node property. For this one needs only to
verify the condition (c) of Definitiori0.
Ifanarcy; = N;j_1,N;, j = 1,...,k does not contain opposite of a node, then

=y = —Njfl,\—Nj does not contain any of the abo¢e+ 2) nodes. Lety, be the arc

with neighboring nodes which contains the arNj/,l,\—Nj.

Consider the case when the above-mentioned condition (i) holds. Then, as was stated
above,ly; = n/k, where/ means the angle. Now we gép, > /{—y;} = n/k, which
contradicts the condition (i).

Next assume that the condition (ii) holds. Then, correspondindgly= =/(k + 1) and
we getly; = /{—y;} < Ly, = n/(k + 1). This contradicts the condition (ii).

Now consider the case when there are no opposite nodes. Then it is enough to prove that

for each arg; = fl\N, with the neighboring nodes froif, there is a nod@/ € 5 such
that—N € (y;,), i=1,..., 2. Indeed, then one of the ard&, N, and Ny, Ny, which

is < w can be chosen as the draof Definition 10.

Conversely assume that this is not satisfied for some fixddhis means that the arc
— i/_l,\—N,- does not contain nodes frof. In other words the basic nodes belong to
the arcsN,-_l/,—\Ni_l and—mi. Both these arcs contain the avmi. This means
that the total number of nodes on these arcskis-23. Hence one of these arcs contains
< (k + 1) nodes and anothek (k + 2) nodes. In other words there agek and > (k + 1)
arcs with neigbouring nodes on them, respectively. Therefore we conclude that there are
two arcs with neighboring nodes having angles ete/(k + 1) and anothe> 7/ k. But
we can sharpen these estimates by making theMircg/—\N,»,l and —mi less than
7, by shifting—N;_1 and—N; a bit clockwise and counterclockwise, respectively. This is
allowed since-N;_1 and—N; do not coincide with any node in this case. This completes
the proof. O

Proof of Lemma 16. Here we will use the following statement

p € II;, @ II; vanishes identically od; = p=0, (41)

m

wherem +n = 2k — 1. Indeed, suppose that= p,, + p,, wherep,, € I;, , andp, € 11,
vanishes identically o@s given by (4). Then by the Bézout theorem we get

PG, y) = (x? + fxy +9y% — Dr(x, y).

Supposenis odd, them is even. By comparing the terms with odd and even total degrees
in both sides of the above equality we get

Pm(x, ¥) = (x? + Bxy + py% — Dri(x, y),
pu(x, ¥) = (@x? + Bxy + py% — Dra(x, y), (42)

wherer; andrp are composed by the termsrafiith odd and even total degrees, respectively.

In particular- = r1+r». Finally notice that, unlesg = 0 andr, = 0, the difference of max-
imum and minimum total degrees of monomials of each of the homogeneous polynomials
pm andp,, according to (42), is at least 2, which is a contradiction.
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Now letusturnto Lemma. Suppose e n}-degree interpolation, whene= 2k—m—1,
is not poised. Then there is a nonzero polynomial

pelll, @I, (43)
such that
pxi,yi)=pkxi,—y;)=0, i=1,....k and p(a,0) =0. (44)
Suppose
m n
plx,y) =Y ox™ iyt 4y Ty
i=0 i=0

Consider the polynomials

1 . 1
px.y) =S pCe y) + e =l palx, y) o= S [p(x, ) = plx, =)l
Notice that both of them satisfy the above conditions (43)—(44). Next we get

im/2] e o
pilx,y) = Y axHyE 4y ity
i=0 i=0

and
[m=1)/2) R (T -
ﬁz(X, y) =y Z OCi)Cm_ZI_lyZI +y Z ﬂixn—Zt—lyZI — ypz(x, y)'
i=0 i=0

It is easily seen that
p2 eIl ;&1L 4,
p2(xi, yi) = p2(xi, —y;)) =0, i=1... k.

Notice that at least one of the polynomiais, p> does not vanish identically, singe =

p1typ2.
Now consider the polynomials

[m/2] ' $2 i [n/2] ' 2 i
- Fe 2] B e 2]
i=0 i=0

and

[n-1)/2 _ 2T
q2(x) = Z o xm 21 [:I:b2 (1 - (7>:|

i=0

[(n—1)/2] X2 i
n—2i—1 2
E ; +be|(1— — .
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The case of the ellipsE, and hyperbold,, given in (5)—(6), correspond {e+-) and(—),
respectively. We have that

q1(x) = p1(x,bp(x)) and g2(x) = p2(x, bo(x)),

where

Gx):=b [+ (1 — x-i) (45)
a

Notice thaty; andg2 do not vanish identically at the same time. Indeed, otherwisand
p2 vanish identically ont» or H, and therefore, according to (4191, p2 = 0, which, as
was mentioned above, is not possible.

Then we have thaf,, ¢ = 0, 1, has the form mentioned in Problem 434nd satisfies
the the homogeneous condition (24), that is, the condition

q:(x;) =0 for i=¢, ... k. (46)

Therefore we conclude that one of the interpolations in Problers) £8¢responding to
eithere = 0 or 1 is not poised.

Next assume conversely, that one of these two interpolations is not poised. Then there is
a nonzero polynomiaj,, ¢ = 0 or 1 of above-mentioned form

m—e [(n—e)/2]

ge(x) =Y x4 N Bt TE
i=0 i=0

that satisfies the condition (46).
Consider the polynomial

m—g 2 y2 v L(n—e)/2] 2 y2 i
. e “2i—¢
Py = T (2 ip) + L he ()
i=0 i=0

where
| (m—=m+1i)/2 ifiisodd,
=142 if i is even.
Let us mention that

pell, &Il

e
We claim thatp # 0. Indeed, for this it is enough to notice that
qe(x) = p(x, p(x)),
where¢(x) is given in (45). Finally set
P, y) = ypx, y).

Thenp # 0 andp e II;, & II;. The only point remains is to note that, in view of the
condition (46), the condition (44) is satisfied too. Thus tine n}-degree interpolation is
not poised. This completes the proof]
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