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Abstract

In this paper, we consider the bivariate Hermite interpolation introduced by Bojanov andXu [SIAM
J. Numer. Anal. 39(5) (2002) 1780–1793]. The nodes of the interpolation with�2k−�, where�=0 or
1, are the intersectionpoints of 2k+1distinct rays from theoriginwith amultiset ofk+1−� concentric
circles. Parameters are the values and successive radial derivatives, whenever the corresponding circle
is multiple. The poisedness of this interpolation was proved only for the set of equidistant rays
[Bojanov and Xu, 2002] and its counterparts with other conic sections [Hakopian and Ismail, East J.
Approx. 9 (2003) 251–267]. We show that the poisedness of this(k + 1− �)(2k + 1) dimensional
Hermite interpolation problem is equivalent to the poisedness of certain 2k+1 dimensional Lagrange
interpolation problems. Then the poisedness of Bojanov–Xu interpolation for a wide family of sets
of rays satisfying some simple conditions is established. Our results hold also with above circles
replaced by ellipses, hyperbolas, and pairs of parallel lines.

Next a conjecture [Hakopian and Ismail, J. Approx. Theory 116 (2002) 76–99] concerning a poised-
ness relation between the Bojanov–Xu interpolation, with set of rays symmetric aboutx-axis, and
certain univariate lacunary interpolations is established. At the end the poisedness for a wide class of
lacunary interpolations is obtained.
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1. Introduction

Let us denote by�n the space of univariate polynomials of degree�n. The spaces of
bivariate polynomials of total degree�n and homogeneous polynomials of degree= n are
denoted by�n and�◦

n, respectively. The unit circumference is

S1 := {(x, y) ∈ R2 : x2 + y2 = 1}.
Instead of the radial derivative:

Drf (x, y) := x√
x2 + y2

fx(x, y)+ y√
x2 + y2

fy(x, y)

one can use here equivalently a modified one (see[5]):

D̃rf (x, y) := xfx(x, y)+ yfy(x, y).

We have

D̃rp = np if p ∈ �◦
n. (1)

The bivariate interpolation discussed here was introduced by Bojanov and Xu[1]. The
nodes of this interpolation are the points of intersection of 2k + 1 distinct rays from the
origin with a (multi)set of concentric circles, centered at the origin. Thus they are identified
if we have the intersection points of the above rays with the unit circleS1, calledbasic
nodes, and radii of the circles. The set of the basic nodes is denoted by

B := B2k = {(xi, yi)}2ki=0 ⊂ S1.

As we will see later the poisedness of the interpolation depends solely on the basic nodes.
The Bojanov–Xu interpolations slightly differ depending on whether the degree of the

polynomial class is even or odd. The pair of even and odd degree interpolations with
�2k−1 and�2k is studied simultaneously. For this we introduce a quantity� and say
that the polynomial space is�2k−�, where� is 0 or 1, in the above even or odd cases,
respectively. Similarly we express statements concerning the above two interpolations in a
unique formulation by using�. In both cases the number of basic nodes is the same: 2k+1,
while the number of concentric circles, counting the multiplicities, isk + 1− �.

Suppose the multiset of the concentric circles consists ofs distinct circles with radii
0< r1 < · · · < rs and corresponding multiplicities�1, . . . ,�s . Then we have

s∑
i=1

�i = k + 1− �. (2)

The multiplicity of a node equals to the multiplicity of the circle to which it belongs. The
interpolation parameters are the values of a function and its radial derivatives up to the order
� − 1, where� is the multiplicity of the node.
Now we are in a position to formulate for� = 0 or 1:
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Problem 1(�). Suppose that a set of basic nodesB, a sequence of radii 0< r1 < · · · < rs ,
and multiplicities�1, . . . ,�s , that satisfy (2) are given. Then for any given data{cij l} find
a (unique) polynomialp ∈ �2k−� such that

(D̃r )
lp(rixj , riyj ) = cij l, (3)

where 1� i�s, 0�j�2k, and 0� l��i − 1.

The next theorem of Bojanov and Xu[1] provides the poisedness of this interpolation
problem in the case of equidistant basic nodes.

Theorem 2(Bojanov and Xu[1]). Suppose the basic nodes are equidistant onS1, � = 0
or 1.Suppose also that an arbitrary sequence of radii0< r1 < · · · < rs , and multiplicities
�1, . . . ,�s , that satisfy(2) are given. Then for any given data{cij l} there exists a unique
polynomialp ∈ �2k−� satisfying the condition(3).

It should be noted that the poisedness of this interpolation cannot be established as readily
as in the most cases of known bivariate (multivariate) interpolations. The reason is that in
this case there are not enough many points on algebraic curves, particularly on straight
lines, or conic sections, to imply the Bézout factorization.
Let us mention that the poisedness of the above interpolation, in the case of one multiple

circle, i.e.,s = 1, was proved later independently in [3], by a factorization method. There
a connection was found between the poisedness of the above interpolation, with nodes
symmetric aboutx-axis, and certain univariate lacunary interpolations (see Conjecture 14,
Section 3). In [2] the factorization method, which allows to combine the Bojanov–Xu
interpolation with other poised interpolations, was extended to the general equidistant case.
As it is pointed out there, Theorem 2 holds as well in the case of concentric ellipses. In
[4] this result was extended also to other conic sections: concentric or cofocused ellipses,
hyperbolas and a single multiple parabola.
In this paper, we will establish the poisedness of Bojanov–Xu interpolation for a wide

family of sets of basic nodesB lying on conic sections (ellipses, hyperbolas, and pairs of
parallel lines) centered at the origin.

2. Preliminaries

We study the Bojanov–Xu interpolation with the basic nodes lying on conic section
centered at the origin, that is,

B := B2k ⊂ C◦
2,

where

C◦
2 := {(x, y) : �x2 + �xy + �y2 = 1}. (4)
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These conic sections, after a suitable rotation of axes, are reduced to the following ellipses,
hyperbolas, and the pairs of lines given by the equations

E2 : x2

a2
+ y2

b2
= 1, (5)

H2 : x2

a2
− y2

b2
= 1, (6)

L2 : y2 = b2 or y = ±b, (7)

respectively, wherea, b > 0.
We can represent the set of the interpolation nodes as a union of sets which are scaledB

sets, i.e.,

N := ∪si=1 {riB} . (8)

We call ri scale constants or “radii”. As earlier, we attach multiplicity�i to the nodes
from {riB} , i = 1, . . . , s, so that the condition (2) is satisfied. Now the formulation of
Bojanov–Xu interpolation in this case proceeds as in Problem 1(�).

Let us now start the discussion by considering some properties of the Lagrange interpo-
lation with bivariate homogeneous polynomials, which will be needed in the sequel.
Suppose the node set

Bn = {(xi, yi)}ni=0 ⊂ R2

does not contain collinear nodes (vectors). Then for any functionf defined onBn there is a
unique homogeneous polynomialP ◦

n,f ∈ �◦
n, such that

P ◦
n,f (xi, yi) = f (xi, yi), i = 0, . . . , n. (9)

We have the following Lagrange formula

P ◦
n,f (x, y) =

n∑
i=0

f (xi, yi)L
◦
ni(x, y), (10)

whereL◦
ni are the homogeneous fundamental polynomials. They are given by the formula

L◦
ni(x, y) =

∏
j∈∗(xj y − yjx)∏
j∈∗(xj yi − yjxi)

, (11)

where the products are over the set

∗ = {0, . . . , i − 1, i+ 1, . . . , n}.
Denote the remainder of this interpolation by

R◦
n,f := f − P ◦

n,f .
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Of course then we have

R◦
n,f = 0 if f ∈ �◦

n. (12)

Now suppose that the interpolation nodes lie on a conic section centered at the origin:

Bn ⊂ C◦
2, (13)

whereC◦
2 is given in (4). Then interestingly, in addition to (12), we have

R◦
n,f (�, �) = 0 if f ∈ �◦

m, n−m�0 is even and (�, �) ∈ C◦
2. (14)

This, on account of (12), follows readily from the following

Proposition 3. The remainderR◦
n,f (�, �), for any f ∈ �◦

m, and(�, �) ∈ C◦
2, is a linear

combination ofR◦
n,xiyj

(�, �) with i + j = m+ 2l, l > 0.Or,more precisely,

R◦
n,f (�, �) =

m+2l∑
i=0

ciR
◦
n,xiym+2l−i (�, �) if f ∈ �◦

m, l > 0, and (�, �) ∈ C◦
2,

(15)

where the coefficientsci depend only onf, l, andC◦
2 (not on the nodes,(�, �), or n).

Indeed, supposef ∈ �◦
m. Consider the polynomial

F(x, y) := (�x2 + �xy + �y2)
l
f (x, y) ∈ �◦

m+2l .

According to (4) we have

f (�, �) = F(�, �) if (�, �) ∈ C◦
2.

In view of (13) this forces

P ◦
n,f (x, y) ≡ P ◦

n,F (x, y).

Now, by using the last two relations we get finally

R◦
n,f (�, �) = R◦

n,F (�, �) =
m+2l∑
i=0

ciR
◦
n,xiym+2l−i (�, �),

where the coefficientsci are obtained from the following expansion

F(x, y) =
m+2l∑
i=0

cix
iym+2l−i .

Consider now the following(n+ 1)× (m+ 1)matrix:

V ◦
n,m =

[
xm0 xm−1

0 y0 · · · ym0· · · · · · · · ·
xmn xm−1

n yn · · · ymn

]
. (16)
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In the case ofm = n this is the Vandermonde matrix of the above homogeneous interpola-
tion:

V ◦
n := V ◦

n,n. (17)

Let us mention that

detV ◦
n �= 0 ⇔ Bn does not contain collinear nodes. (18)

Denote byV(0) andV(1) the generalized Vandermonde matrices of the Bojanov–Xu
interpolation, corresponding to the cases� = 0 and� = 1, respectively:

V(�) := VB,r1,�1,...,rs ,�s (�).

It consists of the following rows:(
D̃r

)l R(rixj , riyj ), 1� i�s, 0�j�2k, 0� l��i − 1,

where the rowR is given by

R(x, y) :=
[
x, y, . . . , x2k−�, . . . , y2k−�

]
.

As it follows from the Bojanov–Xu theorem

detV(�) �≡ 0 for any fixed r1, . . . , rs, (19)

where� = 0 or 1. This statement will be used in the proof of the forthcoming basic
Theorem4.
It is convenient to representV(�) by its partition of homogeneous blocksV ◦

2k,n, given in
(16). In the Lagrange case, where the node setN does not contain multiple scaledB, and
therefore the sequence of “radii” is 0< r1 < · · · < rk+1−�, we have

V(�) =
[
V ◦
2k,0 r1V

◦
2k,1 · · · r2k−�

1 V ◦
2k,2k−�· · · · · · · · · · · ·

V ◦
2k,0 rk+1−�V

◦
2k,1 · · · r2k−�

k+1−�V
◦
2k,2k−�

]
. (20)

Now consider the Hermite case, that is, when some scaled basic node set:rB has a multi-
plicity � > 1. Then, on account of (1), the corresponding rows ofV(�) are partitioned into
V ◦
2k,n as follows (cf. [6]):


V ◦
2k,0 rV ◦

2k,1 r2V ◦
2k,2 · · · r2k−�V ◦

2k,2k−�

0 rV ◦
2k,1 2r2V ◦

2k,2 · · · (2k − �) r2k−�V ◦
2k,2k−�· · · · · · · · · · · · · · ·

0 rV ◦
2k,1 2�−1 r2V ◦

2k,2 · · · (2k − �)�−1 r2k−�V ◦
2k,2k−�


 . (21)

The following matrix of orderm + 1, 0�m�k − 1, of remainder entries, plays an
important role in this paper:

Am =
[
R◦
n,g0

(xn+1, yn+1) · · · R◦
n,gm

(xn+1, yn+1)

· · · · · · · · ·
R◦
n,g0

(x2k, y2k) · · · R◦
n,gm

(x2k, y2k)

]
, (22)

wheren = 2k −m− 1 andgi = xm−iyi .
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3. Results

We start with the result concerning the factorization of generalized Vandermonde deter-
minant of Bojanov–Xu interpolation with basic nodes lying on a conic section centered at
the origin,C◦

2, given in (4).

Theorem 4. Suppose that the basic nodes lie on a conic section centered at the origin:
B ⊂ C◦

2, � = 0 or 1.Suppose also that a sequence of scale constants0 < r1 < · · · < rs ,
and multiplicities�1, . . . ,�s , that satisfy(2) are given. ThendetV(�) = 0 if B contains
� + 1 distinct pairs of opposite nodes. Otherwise,assuming thatB2k−1 does not contain
opposite nodes,we have

detV(�) = 	�

2k−�∏
i=k

det(V ◦
i )

k−1∏
i=0

det(Ai), (23)

where the constant	� = 	�(r1,�1, . . . , rs,�s) �= 0.

Let us mention that the statement on detV(�) = 0 immediately follows from Bézout’s
factorization. Indeed, supposeB contains� + 1 distinct pairs of opposite nodes. Then it
is easily seen that in the case� = 0 there is a line passing through 2k + 2 interpolation
nodes (parameters) while in the case� = 1 there are two lines each passing through 2k

interpolation nodes.
Next, notice that likewise the Bézout factorization implies that if there is an opposite pair

of nodes, say(x2k−1, y2k−1) = −(x2k, y2k), then Problem 1(1) is poised with�2k−1 and
B2k if and only if Problem 1(0) is poised with�2k−2 andB2k−2.
Indeed, suppose� = 1andapolynomialp ∈ �2k−1 satisfies thehomogeneousconditions

(3), that is, the conditions (3), withcij l = 0. Then we get by Bézout’s theorem that

p(x, y) = (ax + by)q(x, y),

where the lineax+by = 0 passes through the above opposite nodes. From this we conclude
that the polynomialq ∈ �2k−2 satisfies the homogeneous conditions (3) corresponding to
the set of the basic nodesB2k−2 and� = 0.

Thus from now onwhen studying the poisedness we can assume, without loss of general-
ity, thatB does not contain opposite nodes. However, sometimes it will be more convenient
to consider the general case.
We readily get from Theorem 4 the following relation between the generalized Vander-

monde determinants of Problem 1(�), corresponding to� = 0 and 1. Let us mention that
these problems have the same set of basic nodes, but the sequences of “radii” (and therefore
multiplicities) may differ.

Corollary 5. Suppose that the basic nodes lie on a conic section centered at the origin:
B ⊂ C◦

2. Suppose also that sequences of scale constants0 < r1(�) < · · · < rs(�)(�),
and multiplicities �1(�), . . . ,�s(�)(�), that satisfy(2) are given for Problem1(�), where
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� = 0, 1.Then assuming thatB2k−1 does not contain opposite nodes,we have

detV(0) = 	0

	1
det(V ◦

2k) detV(1),

where	� = 	�
(
r1(�),�1(�), . . . , rs(�)(�),�s(�)(�)

) �= 0, is given in(23).
In particular,Problem1(1) is poised if Problem1(0) is poised. Conversely,Problem1(0)

is poised if Problem1(1) is poised andB does not contain opposite nodes.

Let us mention that Corollary 5, as well as the two statements following Theorem 4,
are proved in [6] in two special cases. Namely, in the case of one multiple circle, i.e.,
s(0) = s(1) = 1, and the Lagrange case of concentric circles with a special sequence of
radii (the same for both Problem 1(0, 1)).
Thepolynomial interpolation introducedbelowwill be used in thenext theorem.Consider

the Lagrange interpolation with the set of basic nodesB2k and bivariate monomials of two
distinct total degrees:m, n, with m+n = 2k−1. Hence the pair of degrees always consists
of even and odd numbers. We call this interpolation{m, n}-degree interpolation. Thus the
space of the{m, n} interpolating polynomials is

�◦
m ⊕ �◦

n =
{
p : p(x, y) =

m∑
i=0

�ixiym−i +
n∑
i=0

�ix
iyn−i

}
.

The following theorem reduces the poisedness of Bojanov–Xu interpolation, which is of
Hermite type, to the poisedness of the above{m, n}-degree Lagrange interpolations. Let us
mention also that the Bojanov–Xu interpolation is over�2k−�, i.e., a polynomial space of
dimension(k + 1− �)(2k + 1), while all the above{m, n}-degree interpolations are over
polynomial spaces of dimension just 2k + 1. Note also that the set of nodes of all these
latter interpolations isB.

Theorem 6. Suppose that the basic nodes,scale constants,multiplicities and� are as in
Theorem4.Suppose also thatB does not contain� + 1 pairs of opposite nodes. Then the
Bojanov–Xu interpolation with�2k−� is poised if and only if the{m, n}-degree Lagrange
interpolations,m = 0, . . . , k − 1, n= 2k −m− 1,are poised with the basic node setB.

Regarding the{k − 1, k}-degree interpolation above let us mention the following

Proposition 7. The{k − 1, k}-degree interpolation is always poised forE2 andH2, given
in (5)–(6).While forL2, given in(7), the interpolation is poised if and only if out of2k+ 1
interpolating nodesk + 1 belong to one line and remaining k to another.

Indeed, for the casesE2, H2, or the direct implication forL2, assume thatp ∈ �◦
k−1⊕�◦

k

vanishes at the(2k + 1) nodes ofB ⊂ C◦
2. Then by the Bézout theorem we get

p(x, y) = (�x2 + �xy + �y2 − 1)r(x, y).

Now notice that, unlessr ≡ 0 the difference of maximum and minimum total degrees of
monomials of the polynomialp is at least 2, which is a contradiction.
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To verify the inverse implication forL2 suppose that one line, sayy − b = 0, contains
�k+2 nodes and the another�k−1 nodes:(xi, yi), i = 1, . . . , s, wheres�k−1. Then
the following nonzero polynomial

yk−1−s(y − b)

s∏
i=1

(xiy − yix) ∈ �◦
k−1 ⊕ �◦

k

vanishes at all interpolation nodes.
The following property of the{m, n}-degree interpolation is interesting in connection

with the analog property of the Bojanov–Xu interpolation mentioned after Theorem4.
Below, by the{−1,2k − 2}-degree interpolation we mean the Lagrange interpolation with
�◦

2k−2.

Proposition 8. LetB contains a collinear pair of nodes,say(x2k−1, y2k−1) and(x2k, y2k).
Suppose that there is no other node collinear with this pair. Then the{m, n}-degree inter-
polation,m + n = 2k − 1, is poised withB2k if and only if the{m − 1, n− 1}-degree
interpolation is poised withB2k−2.

Indeed, let

(g − f )(xi, yi) = 0 for i = 0, . . . ,2k,

whereg ∈ �◦
m andf ∈ �◦

n. Suppose(x2k−1, y2k−1) = 
(x2k, y2k). Then we have

g(x2k, y2k) = f (x2k, y2k), and 
mg(x2k, y2k) = 
nf (x2k, y2k).

This implies(
m − 
n)g(x2k, y2k) = 0. Since
 �= 0, 1, andm + n = 2k − 1, we get
g(x2k, y2k) = 0 thereforef (x2k, y2k) = 0 too. Consequently

f (x, y) = (ax + by)f1(x, y) and g(x, y) = (ax + by)g1(x, y),

whereg1 ∈ �◦
m−1 andf1 ∈ �◦

n−1 and the line with the equationax + by = 0 passes
through(x2k, y2k). Finally, in view of the second hypothesis onB we get

(g1 − f1)(xi, yi) = 0 for i = 0, . . . ,2k − 2.

It is easily seen from Theorem6 (or 3):

Corollary 9. The poisedness of Bojanov–Xu interpolation depends solely on the basic
nodesB.

Thus the poisedness does not depend on “radii”, i.e., scale constantsri , or multiplicities
�i of the node setN given in (8).

In the next theorem we establish the poisedness of a wide class of Bojanov–Xu interpo-
lations satisfying certain simple conditions. Let us start with notation and a definition.
We denote bŷN,M, whereN,M ∈ C◦

2 are not collinear, the arc ofC◦
2 with endpointsN

andM. Note that in the case of ellipse (circle), there are two such arcs. Then we choose the
one with smaller angle from the origin. By(N̂,M), we denote the open arc, i.e.,N,M /∈
(N̂,M).
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Definition 10. We say that the set of basic nodes

B = {(xi, yi)}2ki=0 ⊂ C◦
2

satisfies theopposite nodeproperty, if there is a subsetB∗
k = {Ni}ki=0 of k + 1 nodes from

B such that

(a) The nodes{Ni}ki=0 are lying successively on a continuous arc� of the conic section
C◦
2,

(b) The arc� is on one side of some line passing through the origin,
(c) for each arc�i := ̂Ni−1, Ni , there is a nodeNk+i ∈ B \ B∗

k such that

−Nk+i ∈ (�i ), i = 1, . . . , k.

Let us mention that one can readily construct node setB ∈ C◦
2 possessing the above

property. In the case of ellipseE2, given in (5), choose a line passing through the origin and
k + 1 nodes ofB∗

k on the ellipse lying on one side of the line. Then the remainingk nodes
are chosen satisfying the above condition (c). In the case of the hyperbolaH2 or the pair of
linesL2, given in (6)–(7), we choosek + 1 nodes ofB∗

k on one branch of the hyperbola or
on one of lines, respectively. Then the remainingk nodes are chosen on the other branch or
line such that the condition (c) is satisfied.

Now we are in a position to formulate

Theorem 11. Suppose that the basic nodes,scale constants,multiplicities,and� are as
in Theorem4. Suppose also thatB ⊂ C◦

2 does not contain� + 1 pairs of opposite nodes
and satisfies the opposite node property. Then the Bojanov–Xu interpolation with�2k−�
is poised.

Thenext result concerns theellipseE2 given in (5).By theanglebetween twononcollinear
points (vectors) we mean the one that is less than�.

Corollary 12. Suppose that the set of basic nodes lies on the ellipse:B ⊂ E2 and does not
contain� + 1 pairs of opposite nodes,while the scale constants,multiplicities,and� are
as in Theorem4.Suppose also that all the angles� between any two neighbor basic nodes
satisfy the inequality

(i) ���/k, or all they satisfy the inequality,
(ii) ���/(k + 1).

Then the Bojanov–Xu interpolation with�2k−� is poised.

Next we turn to the conjecture presented in[3]. Here the 2k+ 1 basic nodes lying onE2
orH2, given by (5)–(6), are symmetric aboutx-axis. Therefore one of them lies onx-axis
and coincides with(±a, 0). For certainty let us take(a, 0). Denote the set of the basic nodes
in this case by

B± := {xi,±yi)}ki=0,
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where(x0, y0) = (a, 0). The projections of these nodes onx-axis give rise to the following
knot set:

X = {xi}ki=0,

wherex0 = a.
Denote

Im,n := {0� i�n : i �= n− 1, n− 3, . . . , m+ 2} .
Consider the following lacunary interpolation problems for� = 0 or 1.

Problem 13(�). Let 0�m�k − 1, n = 2k − m − 1, and the set of knotsX be given.
Then for any given data{ci} find a (unique) polynomialq� of formq�(x) = ∑

i∈Im,n �ixi−�,
such that

q�(xi) = ci for i = �, . . . , k. (24)

It was shown in[3], in the case of one multiple circle, i.e.,s = 1, that if the above
univariate lacunary interpolations are poised withX then the Bojanov–Xu interpolation is
poised withB±. It was conjectured in [3, Remark 13(iii)] that the reverse statement also
is true:

Conjecture 14 (Hakopian and Ismail [3]).Suppose that the basic nodes are symmetric
aboutx-axis and lie on the unit circle:B± ⊂ S1. Then the Bojanov–Xu interpolation with
�2k−�, � = 0, 1,and one multiple circle is poised if and only if there are no opposite knots
in X and all the univariate lacunary interpolations in Problem13(�), � = 0, 1,are poised.

We show that the above Conjecture holds in more general case. Namely for arbitrary
multisetN with the set of basic nodesB± onE2 orH2, given in (5)–(6).

Theorem 15. Suppose that the basic nodes are symmetric aboutx-axis and lie on the
ellipse or hyperbola:B± ⊂ E2 orH2. Suppose also that the scale constants,multiplicities,
and� are as in Theorem4.Then the Bojanov–Xu interpolation with�2k−� is poised if and
only if there are no opposite knots inX and all the univariate lacunary interpolations in
Problem13(�), � = 0, 1,are poised.

Note that ifX contains two opposite knots thenB± contains two pairs of opposite nodes.
Consequently, according to Theorem4, the Bojanov–Xu interpolation with�2k−� is not
poised, where� = 0 or 1. Thus, according to Theorem 5, to prove the above theorem it
suffices to prove

Lemma 16. Let0�m�k − 1.Suppose thatX does not contain opposite knots. Then the
{m, n}-degree interpolation,wherem < n, n = 2k−m−1, is poised withB± ⊂ E2 or H2
if and only if the two lacunary interpolations in Problem11(�), corresponding to� = 0, 1,
are poised.
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Now let us consider the opposite node property for the case ofB±. Note that then the
condition−Nk+i ∈ (�i ) in Definition10(c) is reducing to

xi−1 < −xk+i < xi,
wheneverxi−1 �= xi , whereNj = (xj , yj ). On account of this we get that the opposite
node property is satisfied withB± ⊂ E2 provided

a = x0 > −xk > x1 > −xk−1 > x2 > · · · > xs > −xs+1 > 0, or

a = x0 > −xk > x1 > −xk−1 > x2 > · · · > xs−1 > −xs+1 > xs > 0, (25)

for k = 2s+1 or k= 2s, respectively. In the case of hyperbola:B± ⊂ H2 the corresponding
conditions are

a = x0 < −xk < x1 < −xk−1 < x2 < · · · < xs < −xs+1, or

a = x0 < −xk < x1 < −xk−1 < x2 < · · · < xs−1 < −xs+1 < xs, (26)

for k = 2s + 1 or k= 2s, respectively.
Indeed, it can be readily verified that the setB∗

k of Definition10 can be chosen as follows:

B∗
k = {(xi,±yi)}ki=s+1 or {(xi,±yi)}si=0,

for k = 2s + 1 or k = 2s, respectively, whereyi := b

√
±
(
1− (xi )

2

a2

)
, i = 0, . . . , k.

Therefore, taking into account also Theorems11 and 15, we get the following result on the
poisedness of univariate lacunary interpolations.

Corollary 17. Suppose the chain of inequalities(25) (or (26)) holds for the knot setX .
Then all the lacunary interpolations in Problem13(�), � = 0, 1,are poised.

Now let us turn again to the lacunary interpolation Problem 13(�). Notice that the inter-
polations there are clearly poised in the case of nonnegative knots:xi�0, i = 0, . . . , k.
In fact this readily follows from the Descartes signs rule (see [7, Part 5]). Now, going back
from these interpolation problems to the Bojanov–Xu interpolation, on account of Theorem
15, we get

Corollary 18. Suppose that the basic nodes are in the first or fourth quarter,symmetric
aboutx-axis,and lying on the ellipse or hyperbola:B± ⊂ E2 or H2.Suppose also that the
scale constants,multiplicities and�are as inTheorem4.Then theBojanov–Xu interpolation
with�2k−� is poised.

4. Proofs

Proof of Theorem 4. Proof of Theorem4 consists of two parts corresponding to the cases
� = 1 or 0. Part 1 is the main one to which Part 2 will be reduced readily.
Part 1: The case� = 1. The proof of this part consists of three steps: Proposition 19,

factorizationsV ◦, and factorizationsA. In Step 1 we bring the Vandermonde matrix of
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Bojanov–Xu interpolation, by using the elementary row operations, into a special form.
Both Steps 2 and 3 containk factorizations (cf. formula (23)). In Step 2 the factors are the
Vandermonde determinants of homogeneous interpolations: det(V ◦

i ), i = k, . . . ,2k − 1
(see (16)–(17)). In Step 3 the factors are det(Ai), i = 0, . . . , k − 1, whose entries are
remainders of the homogeneous interpolation (see (22)).
Step1: Consider the Vandermonde matrix of Bojanov–Xu interpolation corresponding

to � = 1 : V(1). In the next proposition it will be transformed to the following form

V ′ =


r10V

◦
2k,0 · · · r1,2k−2V

◦
2k,2k−2 V ◦

2k,2k−1
r20V

◦
2k,0 · · · r2,2k−3V

◦
2k,2k−3 V ◦

2k,2k−2 0
· · · · · · · · ·

rk0V
◦
2k,0 · · · rk,k−1V

◦
2k,k−1 V

◦
2k,k 0 0 0


 ,
(27)

whererij depends onr1,�1, . . . , rs,�s .

Proposition 19. One can bring the matrixV(1), by using the elementary row operations,
with constants depending onr1,�1, . . . , rs,�s , to the above matrixV

′.Moreover,the con-
stants used in the operation of multiplication of a row are not zero. Therefore

detV(1)= 	′ detV ′, (28)

where	′ depends only onr1,�1 . . . , rs,�s .

We will use the partitioned form ofV(1) into homogeneous submatrices (see (20)–(21)).
Let us implement the above-mentioned operations first in the Lagrange case, that is, when
there are no multiple scaled basic sets. Next it will be modified to fit the general Hermite
case of multiple scaled basic sets, too. Thus we start with the Vandermonde determinant
V(1) in the Lagrange form (20).We are going to use theGauss (block) elimination to reduce
it to the form (27). The smoothest way for this is through the use of divided differences.
For this purpose we first factor out(rl)2k−1 from thelth block row of the matrixV(1), for
l = 1, . . . , k, and settl := 1

rl
. This reducesV(1) to

[
t2k−1
1 V ◦

2k,0 t2k−2
1 V ◦

2k,1 · · · V ◦
2k,2k−1· · · · · · · · · · · ·

t2k−1
k V ◦

2k,0 t2k−2
k V ◦

2k,1 · · · V ◦
2k,2k−1

]
.

Next we replace successively the block rows of the above matrix, starting with the last one,
by block rows with coefficients expressed by divided differences. Namely thelth block row
above is replaced by the row[

tl0V
◦
2k,0 tl1V

◦
2k,1 · · · tl,2k−1V

◦
2k,2k−1

]
, (29)

where

tl� = [t1, . . . , tl]t2k−�−1.
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Note that this change actually is a result of elementary row operations. Indeed, consider the
Lagrange formula with distinct knots

[t1, . . . , tl]f =
l∑
i=1

f (ti)∏
j∈∗(ti − tj )

, (30)

where the products are over the set∗ = {1, . . . , i − 1, i + 1, . . . , l}. According to this
formula the above replacement corresponds to the operation of multiplication of thelth
block row by 1∏

∗(tl−tj ) �= 0 and adding to it a linear combination of the firstl − 1

block rows.
Now we use the well-known property of divided differences:

[t1, . . . , tl]t� =
{
1 if � = l − 1,
0 if �� l − 2.

This implies thattl,2k−l = 1 and the coefficients next to it are 0, i.e., the above row (29) is
equal to[

tl0V
◦
2k,0 tl1V

◦
2k,1 · · · tl,2k−l−lV ◦

2k,2k−l−1 V
◦
2k,2k−l 0 . . .0

]
.

Thus the matrixV(1) is reduced toV ′.
Next let us turn to the general Hermite case of arbitrary multiple scaled basic sets.
Suppose some scaled basic node set,rB, has a multiplicity� and consider the corre-

sponding rows ofV(1) partitioned intoV ◦
2k,n, given in (21). Below we will show that one

can transform (21), by elementary row operations, into the following form


t2k−1V ◦
2k,0 · · · tV ◦

2k,2k−2 V ◦
2k,2k−1

(2k − 1)t2k−2V ◦
2k,0 · · · 2tV ◦

2k,2k−3 V ◦
2k,2k−2 0

· · · · · · · · ·
(2k−1)!
(2k−�)! t

2k−�V ◦
2k,0 · · · �!tV ◦

2k,2k−�−1 (� − 1)!V ◦
2k,2k−� 0 0 0


 ,
(31)

where the block rows are successive derivatives of the first row with respect tot .
Meanwhile let us verify that this transformation solves the problem. Consider the gen-

eralized Vandermonde matrix of the Bojanov–Xu interpolation for� = 1. Suppose the
multiplicity associated with “radii”ri or ti = 1/ri , is�i i.e.,

{1, . . . , k} := {t1, . . . , t1︸ ︷︷ ︸
�1

, . . . , ts , . . . , ts︸ ︷︷ ︸
�s

},

wherek = �1 + · · · + �s . Suppose also that the above-mentioned transform is already
performed for the block rows of the matrix corresponding to thoseti for which�i > 1. This
enables us to order the block rows of the matrix in accordance with the above sequence
{1, . . . , k}. In particular, the(l+1)th block row coincides with the derivative oflth block
row with respect tot , wheneverl = l+1. Now, as in the above Lagrange case, we replace
successively the block rows of the matrix, starting with the last one, by block rows with
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coefficients expressed by divided differences, whose knots now may be multiple. Namely
the lth row is replaced by (29) where

tl� = [1, . . . , l]t2k−�−1.

Then we make use of the generalized Lagrange formula for divided differences:

[t1, . . . , t1︸ ︷︷ ︸
�1

, . . . , ts , . . . , ts︸ ︷︷ ︸
�s

]f =
s∑
i=1

�i−1∑
j=0

cij f
j (ti),

whereci,�i−1 �= 0. This formula, in the same way as (30) above, leads to the desired result.
Now, regarding the transformation of the matrix (21) to (31), notice that what we need is

to bring, by elementary row operations, the following matrix

M1 :=



1 r r2 · · · rn

0 r 2r2 · · · nrn

· · · · · · · · · · · · · · ·
0 r 2�−1r2 · · · n�−1rn




to the matrix

M2 :=



tn · · · t2 t 1
ntn−1 · · · 2t 1 0
· · · · · · · · ·

n!
(n−�+1)!t

n−�+1 · · · �!
1! t (� − 1)! 0 0 0


 ,

wheret = 1/r. Notice that it is enough to transformM1 to

M3 :=



1 r · · · rn−2 rn−1 rn

n (n− 1)r · · · 2rn−2 rn−1 0
· · · · · · · · ·

n!
(n−�+1)!

(n−1)!
(n−�)! r · · · �!

1!r
n−� (� − 1)!rn−�+1 0 · · · 0


 ,

since gettingM2 fromM3 is immediate. Indeed, for this we are to factor outrn from the
first row,rn−1 from the second row and so on. What remains then is to sett = 1/r.
Next note that clearly it suffices to do the reverse of what we need. Namely, to transform

by elementary row operations thematrixM3 toM1. This can be done in view of the fact that
the lth row of the matrixM1 is a linear combination of firstl rows ofM3 with coefficients
depending only onl, l = 1, . . . ,�.

It is enough to verify the latter only for the last:�th row ofM1. For this observe that the
coefficients of the entries of the last rowofM1 and all the� rows ofM3 coincide respectively
with the values of the monomialx�−1 and following� polynomials

1, (n− x), (n− x)(n− x − 1), . . . , (n− x)(n− x − 1) · · · (n− x − � + 2), (32)

at the points 0, 1, . . . , n. Finally, the only point remains is to represent the monomialx�−1

as a linear combination of polynomials in (32), which can be readily checked.
Step2: FactorizationsV ◦. The casewhenB contains twoormore distinct pairs of opposite

nodes was discussed just after the formulation of the theorem. By the way this could be
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done readily also by using the matrixV ′ (see also the corresponding matrix in Part 2). It
remains to consider the case when the basic node set contains no more than one such pair
of nodes. Thus suppose without loss of generality that

there are no collinear nodes inB2k−1. (33)

Now,we turn to thematrixV ′ given in (27). Notice that in the last block column, where there
are 2k columns, the nonzero entries form a submatrixV ◦

2k,2k−1 of dimension(2k+1)×2k.
Wearegoing to implementabasic step—eliminate the last rowofV ◦

2k,2k−1 corresponding
to the node(x2k, y2k). After this the above-mentioned submatrix with nonzero entries in
the last block column ofV ′ becomesV ◦

2k−1,2k−1 which has dimension 2k × 2k. This will
enable us to factorize detV ′ by using the Laplace expansion along the last block column of
the determinant.
Throughout the proof,Rj

i stands for thejth row inside theith block row of the matrix
under the discussion, where the latter will be clear from the context.
In the above-mentioned elimination we will use homogeneous Lagrange interpolation

with the polynomial space�◦
2k−1 and the nodes(x0, y0), . . . , (x2k−1, y2k−1). This inter-

polation is poised in view of (18) and (33). Let us now perform the elimination by the
following row operation inside the first block row of the matrixV ′:

R2k+1
1 → R2k+1

1 −
2k∑
i=1

L◦
2k−1,i−1(x2k, y2k)Ri

1,

where the coefficients are the fundamental polynomials given in (11).
By virtue of the Lagrange formula (10) we get that the old rowR2k+1

1 :[
r10 r11x r11y . . . r1,2k−2x

2k−2 . . . r1,2k−2y
2k−2 x2k−1 . . . y2k−1

]
|(x2k,y2k)

will be replaced by the following new one:

R2k+1
1 = [

r10R
n
00 r11R

n
10 r11R

n
01 . . . r1,2k−2R

n
2k−2,0

. . . r1,2k−2R
n
0,2k−2 0 . . .0

] |(x2k,y2k),
wheren = 2k − 1 and

Rnij := R◦
n,�ij

:= �ij − P ◦
n,�ij

and�ij := xiyj . (34)

Notice that the entries of the above row corresponding toRnij with i + j = 2k − 1 were
eliminated since the monomials�ij there belong to the space of interpolating polynomials:
�◦

2k−1.
Now one could already factorize the Vandermonde determinant. But in order not to be

occupied with the above rowR2k+1
1 in the nextV ◦-factorizations we need to eliminate also

its entries corresponding toRnij with i + j = 2k − 2, 2k − 3, . . . ,2k − k = k. To do this
for the casei+ j = 2k−2, consider the rows in the second block row of the matrixV ′. Let
us start by taking the same linear combination here, as in the first block row, and designate
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it by R∗
2, i.e.,

R∗
2 := R2k+1

2 −
2k∑
i=1

L◦
2k−1,i−1(x2k, y2k)Ri

2.

Notice that this results in

R∗
2 = [

r20R
n
00 . . . r2,2k−3R

n
2k−3,0 . . . r2,2k−3R

n
0,2k−3

×Rn2k−2,0 . . . R
n
0,2k−20 . . .0

] |(x2k,y2k).
Then the row operation

R2k+1
1 → R2k+1

1 − r1,2k−2R∗
2

provides the desired elimination. By continuing eliminations this way till thekth block row
we will finally reduceR2k+1

1 to the following row, wheren = 2k − 1 anda1i are some
numbers:

R2k+1
1 =

[
a10R

n
00 a

1
1R

n
10 a

1
1R

n
01 . . . a

1
k−1R

n
k−1,0 . . . a

1
k−1R

n
0,k−1 0 . . .0

]
|(x2k,y2k).

Note that the coefficientsa1i are the same for the entriesRnij with i+ j = s. Let us mention
that the entries of these rows, preceding the last zeros, will remain unchanged till the end
of this step of factorizations.
Now we get by the Laplace theorem:

detV ′ = 	′′ detV ′′ detV ◦
2k−1,2k−1, (35)

where	′′ = 	′′(r1,�1, . . . , rs,�s) and the matrixV ′′ is obtained fromV ′ by replacing
the first block row by the above rowR2k+1

1 and by canceling the last block column (2k
columns). In order not to change the numbers of block rows it is convenient to consider the
latter row as the first block row ofV ′′ (which has just one row).
Let us then turn to the matrixV ′′. Notice that in the last block column, where there are

2k − 1 columns, the nonzero elements form the submatrixV ◦
2k,2k−2 of dimension(2k +

1)× (2k − 1).
Next we implement the analog of above-mentioned basic step—eliminate the last two

rows ofV ◦
2k,2k−2 which correspond to the nodes(x2k−1, y2k−1) and(x2k, y2k). After this

step the above-mentioned submatrix with nonzero entries in the last block column ofV ′′
becomesV ◦

2k−2,2k−2 which has dimension(2k − 1)× (2k − 1). This will enable us to use
the Laplace theorem for another factorization.
For the elimination, as earlier, we will use homogeneous Lagrange interpolation. Here

the polynomial space is�◦
2k−2 and the nodes are(x0, y0), . . . , (x2k−2, y2k−2). This inter-

polation is poised in view of (18) and (33). Now let us do the following row operations
inside the second block row

R2k+1
2 → R2k+1

2 −
2k−2∑
i=1

L◦
2k−2,i−1(x2k, y2k)Ri

2,

R2k
2 → R2k

2 −
2k−2∑
i=1

L◦
2k−2,i−1(x2k−1, y2k−1)Ri

2.
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By using the Lagrange formula (10) we get that the old 2kth and(2k + 1)th rows of the
second block row will be replaced by the following new ones:

R2k+1
2 = [

r20R
n
00 r21R

n
10 r21R

n
01 . . . r2,2k−3R

n
2k−3,0

. . . r2,2k−3R
n
0,2k−3 0 . . .0

] |(x2k,y2k),
and

R2k
2 = [

r20R
n
00 r21R

n
10 r21R

n
01 . . . r2,2k−3R

n
2k−3,0

. . . r2,2k−3R
n
0,2k−3 0 . . .0

] |(x2k−1,y2k−1),

wheren = 2k − 2 andRn
ij is given in (34). As earlier, the entries of the above rows

corresponding toRnij with i + j = 2k − 2 were eliminated, since the monomials�ij there
belong to the space of interpolating polynomials:�◦

2k−2.
Before we use the Laplace theorem for the determinant ofV ′′, we eliminate, in the same

way as in the previous case, also the entries of the above two rows corresponding toRnij
with i + j = 2k − 3,2k − 4, . . . ,2k − k = k. Thus finally they will be reduced to the
following two rows, wheren = 2k − 2 anda2i are some numbers:

R2k+1
2 :=

[
a20R

n
00 a

2
1R

n
10 a

2
1R

n
01 . . . a

2
k−1R

n
k−10 . . . a

2
k−1R

n
0k−1 0 . . .0

]
|(x2k,y2k),

R2k
2 :=

[
a20R

n
00 a

2
1R

n
10 a

2
1R

n
01 . . . a

2
k−1R

n
k−10 . . . a

2
k−1R

n
0k−1 0 . . .0

]
|(x2k−1,y2k−1).

Note that the coefficientsa2i are the same for these two rows. Also they are the same for the
entriesRnij with i + j = s. Let us mention that the entries of these rows, preceding the last
zeros, will remain unchanged till the end of this step of factorizations.
We get by using the Laplace theorem:

detV ′′ = 	′′′ detV ′′′ detV ◦
2k−2,2k−2, (36)

where	′′′ = 	′′′(r1,�1, . . . , rs,�s) and the matrixV ′′′ is obtained fromV ′′ by replacing its
second block row by the above rowsR2k+1

2 ,R2k
2 and by canceling the last block column

(2k − 1 columns).
Now by combining (28), (35), and (36) we get

detV(1)= 	′	′′	′′′ detV ′′′ detV ◦
2k−2,2k−2 detV

◦
2k−1,2k−1.

Continuing this way, after the lastkth factorization, we get

detV(1)= 	
2k−1∏
i=k

det(V ◦
i ) det(A), (37)
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where	 = 	(r1,�1, . . . , rs,�s) andA is the following matrix

A =




a10R
2k−1
00 a11R

2k−1
10 a11R

2k−1
01 · · · a1k−1R

2k−1
k−1,0 · · · a1k−1R

2k−1
0,k−1

a20R
2k−2
00 a21R

2k−2
10 a21R

2k−2
01 · · · a2k−1R

2k−2
k−1,0 · · · a2k−1R

2k−2
0,k−1

a20R
2k−2
00 a21R

2k−2
10 a21R

2k−2
01 · · · a2k−1R

2k−2
k−1,0 · · · a2k−1R

2k−2
0,k−1· · · · · · · · ·

ak0R
k
00 ak1R

k
10 ak1R

k
01 · · · akk−1R

k
k−1,0 · · · akk−1R

k
0,k−1· · · · · · · · ·

ak0R
k
00 ak1R

k
10 ak1R

k
01 · · · akk−1R

k
k−1,0 · · · akk−1R

k
0,k−1



.

Here the first row is evaluated at(x2k, y2k), second and third rows at(x2k, y2k) and(x2k−1,
y2k−1), respectively, and the lastk rows at(x2k, y2k), . . . , (xk+1, yk+1), respectively. Note
also that the coefficients of the entries withRnij depend only onn and(i + j).
Step3: FactorizationsA. Note that so far all we used for the set of basic nodes was that

B2k−1 does not contain collinear nodes. At this step we will use the condition that

B ⊂ C◦
2,

whereC◦
2 is given in (4).

Here we will factorize det(A) by using the Laplace theorem with respect to the lastk
rows. Beforehand we will eliminate some entries there. Denote the submatrix ofA formed
by its lastk rows byB. Note that the submatrix in the lastk columns ofB is akk−1Ak−1,
where the matrixAk−1 is given in (22).
Our first aim is to eliminate by elementary rowoperations ofA all the columns ofBexcept

the lastk ones. We begin by proving thatakk−1 �= 0. Conversely suppose thatakk−1 = 0.
Then according to the statement (14), the last 2k−1 columns ofBvanish, or in other words,
all the entries ofB corresponding toRkij with i + j�k − 2 vanish. Next, the statements
(14) and (15), withm+ 2l = k or k − 3, imply that all the columns ofB are either zero or
linear combinations of itsk−2 columns with entries corresponding toRkk−3,0, . . . , R

k
0,k−3,

respectively. This means that the maximal number of linearly independent columns and
therefore rows ofB is �k−2. Therefore the rows ofBand hence the rows ofA are linearly
dependent, which contradicts to (19).
Thus, we haveakk−1 �= 0. By using again the statements (14) and (15) nowwithm+2l =

k − 1 we get that all the columns ofB are (either zero or) linear combinations of its last
k columns. This enables us to carry out the elimination of those columns ofBmentioned
above as follows. Consider such a column with entries corresponding toRk��(xl, yl), with
� + ��k − 2. If k − � − � is even then in view of (14) the column vanishes. Otherwise,
according to the above conclusion:

R
j
��(xl, yl) =

k−1∑
i=0

ciR
j

k−1−i,i(xl, yl),

wherel = k + 1, . . . ,2k + 1, j = k, . . . ,2k − 1, andci depends only on�, �, k andC◦
2

not onj or l.
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Now let us perform the following column operation of the matrixA :

C�� → C�� − ak�+�

akk−1

k−1∑
i=0

ciCk−1−i,i,

whereCmn is the column ofA with entries corresponding toRjmn, and the coefficientsci are
from the above relation. It is easily seen that the column ofA being considered becomes
then

C�� =
[
ã1s R

2k−1
�� , ã2s R

2k−2
�� , ã2s R

2k−2
�� , . . . , ãk−1

s Rk+1
�� , . . . , ãk−1

s Rk+1
�� , 0 . . . ,0

]T
,

wheres = � + � and

ã
j
s = a

j
s − a

j

k−1
aks

akk−1

.

From here we conclude, what is important, that the new coefficients are the same for all
columnsC�� with s = � + � and also they are the same for entries corresponding toRl��

with s = � + �. Let us mention also that̃ajs depend only onr1,�1 . . . , rs�s , not on the
conic sectionC◦

2. In other words the property of the coefficients of the matrixA mentioned
just before Step 3 is preserved.
Now the Laplace theorem gives

detA = (ak−1
k )k detAk−1 detÃ,

where

Ã =




ã10R
2k−1
00 ã11R

2k−1
10 ã11R

2k−1
01 · · · ã1

k−2R
2k−1
k−2,0 · · · ã1

k−2R
2k−1
0,k−2

ã20R
2k−2
00 ã21R

2k−2
10 ã21R

2k−2
01 · · · ã2

k−2R
2k−2
k−2,0 · · · ã2

k−2R
2k−2
0,k−2

ã20R
2k−2
00 ã21R

2k−2
10 ã21R

2k−2
01 · · · ã2

k−2R
2k−2
k−2,0 · · · ã2

k−2R
2k−2
0,k−2· · · · · · · · ·

ãk+1
0 Rk+1

00 ãk+1
1 Rk+1

10 ãk+1
1 Rk+1

01 · · · ãk+1
k−2R

k+1
k−2,0 · · · ãk+1

k−2R
k+1
0,k−2· · · · · · · · ·

ãk+1
0 Rk+1

00 ãk+1
1 Rk+1

10 ãk+1
1 Rk+1

01 · · · ãk+1
k−2R

k+1
k−2,0 · · · ãk+1

k−2R
k+1
0,k−2



.

Continuing this way we get the factorization

detA = 	̄
k−1∏
i=0

det(Ai),

where	̄ = 	̄(r1,�1, . . . , rs,�s). This combined with (37) yields the desired formula (23),
where	� = 		̄ �= 0 according to the statement (19). This completes the proof for the case
� = 1.
Part2: The case� = 0. This case can be reduced to the previous case� = 1.We transform

V(0), in the same way as in Part 1, to the form (27). Now we get

detV(0) = 	′ detV ′,
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where the matrixV ′ in this case is

V ′ =



r11V
◦
2k,0 · · · r1,2kV

◦
2k,2k−1 V ◦

2k,2k
r21V

◦
2k,0 · · · r2,2k−1V

◦
2k,2k−2 V ◦

2k,2k−1 0
· · · · · · · · ·

rk+1,1V
◦
2k,0 · · · rk+1,k−1V

◦
2k,k−1 V

◦
2k,k 0 0 0


 .

Note that	′ andrij depend only onr1,�1, . . . , rs,�s .
Then notice that the nonzero elements in the last block column above form a submatrix

of dimension(2k + 1)× (2k + 1). Thus without additional undertaking we get from the
Laplace theorem

detV ′ = detV ′′ detV ◦
2k,2k,

whereV ′′ is exactly of form (27). Therefore it remains to apply the result of Part 1. This
completes the proof.�

Proof of Theorem 6. Suppose thatB = B2k does not contain�+1 pairs of opposite nodes.
Then there are no opposite nodes in the case� = 0 and without loss of generality we can
assume that there are no opposite nodes insideB2k−1 in the case� = 1 as well. Thus in both
cases the determinantsV ◦

i in the right side of the formula (23) do not vanish. This means
that the Bojanov–Xu interpolation for� = 0, 1 is poised if and only if the determinantsAi
there do not vanish.
Now what remains is to show that detAm �= 0 if and only if the{m, n}-degree interpola-

tion (n = 2k−m−1) is poised, for eachm = 0, . . . , k−1. Thus, suppose that detAm = 0
for some fixedm (see (22)). Then the columns of the matrixAm are linearly dependent:

m∑
i=0

�iCi = 0,

whereCi is theith column and not all the coefficients are zero. This implies that

R◦
n,g(xj , yj ) = 0, j = n+ 1, . . . ,2k,

where

g =
m∑
i=0

�igi =
m∑
i=0

�ixm−iyi �≡ 0.

On the other hand, by the notion of the remainder and (9),

R◦
n,g(xj , yj ) = 0, j = 0, . . . , n.

Thus

g(xj , yj )− P ◦
n,g(xj , yj ) = 0 for j = 0, . . . ,2k. (38)

Now, notice that thepolynomial in the left sideof this equality is not identically zero, belongs
to�◦

m ⊕ �◦
n and vanishes at all the nodes. This means that the{m, n}-degree interpolation

is not poised.
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Next assume that the{m, n}-degree interpolation is not poised. Then

g(xj , yj )− f (xj , yj ) = 0 for j = 0, . . . ,2k,

whereg ∈ �◦
m, f ∈ �◦

n, andg �≡ 0. This implies that

f = P ◦
n,g

and the relation (38) takes place. The latter, as we knew, is equivalent to detAm = 0.

Proof of Theorem 11. Assume thatB satisfies the opposite node property. Suppose with-
out loss of generality thatB2k−1 does not contain opposite nodes. LetB∗

k = {Ni}ki=0 ⊂ B
be the set fromDefinition 10. We will prove that each{m, n}-degree interpolation is poised,
wherem = 0, . . . , k − 1, n= 2k −m− 1. Fix any suchm. Assume that

(g − f )(xi, yi) = 0, for i = 0, . . . ,2k,

whereg ∈ �◦
m andf ∈ �◦

n. Then it suffices to show

g, f ≡ 0.

Thus we have that

g(xi, yi) = f (xi, yi) for i = 0, . . . ,2k. (39)

Let us first consider the case when

g(xi, yi) = f (xi, yi) �= 0, i = 0, . . . ,2k.

We are going to show that on each open arc:(�s) = ̂Ns−1, Ns, s = 1, . . . , k, between
two neighbor basic nodes ofB∗

k , the total number of zeros ofg andf is at least 2. Let us fix
such ans. At the endpoints of the arc(�s) : Ns−1 andNs , the polynomialsg, f assume
the same values, say� and�, respectively. If�� < 0 then each of the two polynomials will
have zero inside the open arc. Thus suppose�� > 0. LetN� = (x�, y�),� = k + s, be the
node fromB such that−N� ∈ (�s) (see Definition10 (c)).
Now by denotingg(x�, y�) = f (x�, y�) := � we get that

g(−x�,−y�) = (−1)m� and f (−x�,−y�) = (−1)n�.

Therefore the values ofg andf at the three successive pointsNs−1, −N�, Ns of the arc
�s are

�, (−1)m�, �, and �, (−1)n�, �,

respectively. The mean terms here have different signs, since the numbersm, n, have
different parity, while the first and third terms:�,�, have the same sign. Thus one of the
polynomials changes its sign on the considered arc at least twice and therefore has at least
two zeros.
Summarizing, we have that the total number of zeros of homogeneous polynomialsgand

f is at leastm + n + 1 = 2k. Therefore eitherg has more thanm zeros orf has more than
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n zeros. Notice that, by virtue of the condition (b) of Definition10, there are no opposite
zeros. Thereforeg ≡ 0 orf ≡ 0, respectively. Now the condition (39) readily implies that
the other one is also identical to zero.
Next let us return to the condition (39) and consider the case when

f (xj , yj ) = g(xj , yj ) = 0

for some fixedj = 0, . . . ,2k. Then

g(x, y) = (ax + by)g1(x, y) and f (x, y) = (ax + by)f1(x, y),

where the line with the equationax + by = 0 passes through(xj , yj ).
Thus the given problem is reduced to

(g1 − f1)(xi, yi) = 0 for i = 0, . . . ,2k, i �= j, (40)

whereg1 ∈ �◦
m−1 andf1 ∈ �◦

n−1 and we are to show that

g1, f1 ≡ 0.

In other words,kwas replaced byk − 1 (one equality in (40) is extra and can be ignored).
The only point remains is to verify that the opposite node property holds with the latter

problem. First consider the case when no point ofB is opposite to(xj , yj ). Then the subset
in Definition 10 can be chosen asB∗

k−1 := B∗
k \ {(xs, ys)}, where

s =
{
j if (xj , yj ) ∈ B∗

k ,

j − k if − (xj , yj ) ∈ ̂Nj−k+1, Nj−k.

Also the equality withi = j + k or j − k can be ignored in (40), respectively.
Now consider the case when there is a point ofB opposite to(xj , yj ). Note that this is

possible only in the case� = 1. Then it is easily seen that(xj , yj ) and its opposite point
necessarily coincide with the nodesN0, Nk ∈ B∗

k , where

N0 = −Nk.
Finally what remains is to note that the subset of Definition10 in this case can be taken as
B∗
k−1 = B \ B∗

k . Also the equality withi = k or i = 0 can be ignored in (40), ifj = 0 or
j = k, respectively. This completes the proof.�

Proof of Corollary 12. Throughout the proof the arcwith angle� : N̂,−N means theone
for whichNgoes to−N counterclockwise. Suppose thatB = {Ni}2ki=0, whereN0, . . . , N2k
are lying successively counterclockwise on the ellipseE2, given in (5).

First consider the casewhenB contains a pair of opposite nodes:Nand−N . Note that this
is possible only in the case� = 1. Then one of the arcŝN,−N, −̂N,N contains�(k+ 1)
and another�(k + 2) nodes (the nodesN and−N are counted in both cases). Therefore
if one of the conditions of Corollary 12: (i) or (ii) is satisfied then these numbers become
(k+ 1) and(k+ 2). Moreover, the(k+ 1) nodes or the(k+ 2) nodes become equidistant,
with arcs between neighbors equal�/k or �/(k + 1), respectively. Now let us choose the
(k + 1) nodes to form the setB∗

k = {Ni}ki=0 from Definition 10. In view of Theorem 11,
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it suffices to show thatB satisfies the opposite node property. For this one needs only to
verify the condition (c) of Definition10.
If an arc�j = ̂Nj−1, Nj , j = 1, . . . , k, does not contain opposite of a node, then

−�j = ̂−Nj−1,−Nj does not contain any of the above(k + 2) nodes. Let�∗ be the arc

with neighboring nodes which contains the arĉ−Nj−1,−Nj .
Consider the case when the above-mentioned condition (i) holds. Then, as was stated

above,� �j = �/k, where� means the angle. Now we get� �∗ > � {−�j } = �/k, which
contradicts the condition (i).
Next assume that the condition (ii) holds. Then, correspondingly,� �∗ = �/(k + 1) and

we get� �j = � {−�j } < � �∗ = �/(k + 1). This contradicts the condition (ii).
Now consider the case when there are no opposite nodes. Then it is enough to prove that

for each arc�i = ̂Ni−1, Ni with the neighboring nodes fromB, there is a nodeN ∈ B such

that−N ∈ (�i ), i = 1, . . . ,2k. Indeed, then one of the arcŝN0, Nk andN̂k, N2k, which
is< � can be chosen as the arc� of Definition 10.
Conversely assume that this is not satisfied for some fixedi. This means that the arc
̂−Ni−1,−Ni does not contain nodes fromB. In other words the basic nodes belong to

the arcs ̂Ni−1,−Ni−1 and−̂Ni,Ni . Both these arcs contain the arĉNi−1, Ni . This means
that the total number of nodes on these arcs is 2k + 3. Hence one of these arcs contains
�(k + 1) nodes and another�(k + 2) nodes. In other words there are�k and�(k + 1)
arcs with neigbouring nodes on them, respectively. Therefore we conclude that there are
two arcs with neighboring nodes having angles one��/(k + 1) and another��/k. But
we can sharpen these estimates by making the arcŝNi−1,−Ni−1 and−̂Ni,Ni less than
�, by shifting−Ni−1 and−Ni a bit clockwise and counterclockwise, respectively. This is
allowed since−Ni−1 and−Ni do not coincide with any node in this case. This completes
the proof. �

Proof of Lemma 16. Here we will use the following statement

p ∈ �◦
m ⊕ �◦

n vanishes identically onC
◦
2 ⇒ p ≡ 0, (41)

wherem+n = 2k−1. Indeed, suppose thatp = pm+pn, wherepm ∈ �◦
m, andpn ∈ �◦

n,
vanishes identically onC◦

2 given by (4). Then by the Bézout theorem we get

p(x, y) = (�x2 + �xy + �y2 − 1)r(x, y).

Supposem is odd, thenn is even. By comparing the terms with odd and even total degrees
in both sides of the above equality we get

pm(x, y) = (�x2 + �xy + �y2 − 1)r1(x, y),

pn(x, y) = (�x2 + �xy + �y2 − 1)r2(x, y), (42)

wherer1 andr2 are composed by the terms ofr with odd and even total degrees, respectively.
In particularr = r1+r2. Finally notice that, unlessr1 ≡ 0 andr2 ≡ 0, the differenceofmax-
imum and minimum total degrees of monomials of each of the homogeneous polynomials
pm andpn, according to (42), is at least 2, which is a contradiction.
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Now letus turn toLemma.Suppose the{m, n}-degree interpolation,wheren = 2k−m−1,
is not poised. Then there is a nonzero polynomial

p ∈ �◦
m ⊕ �◦

n, (43)

such that

p(xi, yi) = p(xi,−yi) = 0, i = 1, . . . , k and p(a, 0) = 0. (44)

Suppose

p(x, y) =
m∑
i=0

�ixm−iyi +
n∑
i=0

�ix
n−iyi .

Consider the polynomials

p1(x, y) := 1

2
[p(x, y)+ p(x,−y)] , p̃2(x, y) := 1

2
[p(x, y)− p(x,−y)] .

Notice that both of them satisfy the above conditions (43)–(44). Next we get

p1(x, y) =
[m/2]∑
i=0

�ixm−2iy2i +
[n/2]∑
i=0

�ix
n−2iy2i

and

p̃2(x, y) = y

[(m−1)/2]∑
i=0

�ixm−2i−1y2i + y

[(n−1)/2]∑
i=0

�ix
n−2i−1y2i =: yp2(x, y).

It is easily seen that

p2 ∈ �◦
m−1 ⊕ �◦

n−1,

p2(xi, yi) = p2(xi,−yi) = 0, i = 1, . . . , k.

Notice that at least one of the polynomialsp1, p2 does not vanish identically, sincep =
p1 + yp2.
Now consider the polynomials

q1(x) =
[m/2]∑
i=0

�ixm−2i
[
±b2

(
1− x2

a2

)]i
+

[n/2]∑
i=0

�ix
n−2i

[
±b2

(
1− x2

a2

)]i

and

q2(x)=
[(m−1)/2]∑
i=0

�ixm−2i−1
[
±b2

(
1− x2

a2

)]i

+
[(n−1)/2]∑
i=0

�ix
n−2i−1

[
±b2

(
1− x2

a2

)]i
.
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The case of the ellipseE2 and hyperbolaH2, given in (5)–(6), correspond to(+) and(−),
respectively. We have that

q1(x) = p1(x, b�(x)) and q2(x) = p2(x, b�(x)),

where

�(x) := b

√
±
(
1− x2

a2

)
. (45)

Notice thatq1 andq2 do not vanish identically at the same time. Indeed, otherwisep1 and
p2 vanish identically onE2 orH2 and therefore, according to (41),p1, p2 ≡ 0, which, as
was mentioned above, is not possible.
Then we have thatq�, � = 0, 1, has the form mentioned in Problem 13(�) and satisfies

the the homogeneous condition (24), that is, the condition

q�(xi) = 0 for i = �, . . . , k. (46)

Therefore we conclude that one of the interpolations in Problem 13(�) corresponding to
either� = 0 or 1 is not poised.

Next assume conversely, that one of these two interpolations is not poised. Then there is
a nonzero polynomialq�, � = 0 or 1 of above-mentioned form

q�(x) =
m−�∑
i=0

�ixm−i−� +
[(n−�)/2]∑
i=0

�ix
n−2i−�,

that satisfies the condition (46).
Consider the polynomial

p(x, y) :=
m−�∑
i=0

�ixm−i−�
(
x2

a2
± y2

b2

)�i
+

[(n−�)/2]∑
i=0

�ix
n−2i−�

(
x2

a2
± y2

b2

)i
,

where

�i =
{
(n−m+ i)/2 if i is odd,
i/2 if i is even.

Let us mention that

p ∈ �◦
m−� ⊕ �◦

n−�.

We claim thatp �= 0. Indeed, for this it is enough to notice that

q�(x) = p(x,�(x)),

where�(x) is given in (45). Finally set

p̃(x, y) = y�p(x, y).

Then p̃ �= 0 andp̃ ∈ �◦
m ⊕ �◦

n. The only point remains is to note that, in view of the
condition (46), the condition (44) is satisfied too. Thus the{m, n}-degree interpolation is
not poised. This completes the proof.�
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